Merge-Sort Algorithm Overview
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the running time of the merge sort algorithm?

  • O(n log n)
  • O(n^2)
  • Θ(n) (correct)
  • Θ(log n)
  • In the context of merge sort, what does the variable 'q' represent?

  • The starting index of the second sub-array
  • The midpoint of the array (correct)
  • The index of the smallest element
  • The total number of elements in the array
  • What type of algorithm is merge sort categorized as?

  • Divide-and-conquer algorithm (correct)
  • Dynamic programming algorithm
  • Greedy algorithm
  • Brute-force algorithm
  • When analyzing the time complexity of merge sort, what does the recurrence relation T(n) represent?

    <p>Total time complexity of the algorithm</p> Signup and view all the answers

    According to the Master Theorem, what happens when f(n) is O(n^(log_b(a) - ϵ))?

    <p>T(n) = Θ(n log_b(a))</p> Signup and view all the answers

    Study Notes

    Merge-Sort Overview

    • Running time for merge-sort is Θ(n).
    • Merge-sort is a divide-and-conquer algorithm for sorting an array.
    • It recursively divides an array into two halves, sorting each half before merging them back together.

    Merge-Sort Process

    • The initial call is made with MERGE-SORT(A, 1, A.length) to sort the entire array A.
    • The division process involves calculating q = ⌊n/2⌋ to split the array into sub-arrays A[p,..., q] and A[q + 1,..., r].

    Recurrence Relation

    • T(n) defines the running time for an algorithm with n elements.
    • For small problems, when n ≤ c (c is a constant), the solution takes Θ(1) time.
    • For larger problems, with a = b = 2 in merge-sort, the recurrence relation is:
      • T(n) = aT(n/b) + D(n) + C(n)

    Master Theorem

    • The Master Theorem provides a method to analyze the running time of divide-and-conquer algorithms.
    • If T(n) = aT(n/b) + f(n), then specific conditions determine T(n):
      • T(n) = Θ(n^(log_b a)) if f(n) = O(n^(log_b a - ϵ)) for some ϵ > 0.

    Merge Procedure

    • The MERGE function combines two sorted sub-arrays A[p,..., q] and A[q + 1,..., r].
    • It uses two sentinel values (∞) to simplify the merging process.
    • The pseudo-code includes determining lengths of sub-arrays and initializing loops for merging.

    Merge Function Analysis

    • The merge process is efficient with a time complexity of O(n).
    • Essential steps include copying elements and merging in a single pass.

    Importance of Sorting Algorithms

    • Sorting is fundamental in algorithms, often serving as a preprocessing step for other applications.
    • Various sorting techniques exist, including insertion-sort, which is Θ(n²) in the worst case.
    • Merge-sort and other algorithms like heapsort and quicksort offer better performance.

    Divide-and-Conquer Strategy

    • The divide-and-conquer strategy involves three main steps:
      • Divide: Split the problem into smaller sub-problems.
      • Conquer: Solve each sub-problem recursively.
      • Combine: Merge the solutions of the sub-problems to form a complete solution.

    Recursive Functions Example

    • Recursive functions can be demonstrated through Fibonacci numbers with defined relationships:
      • f(0) = 0, f(1) = 1, and f(n) = f(n-1) + f(n-2) for n ≥ 2.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    W2_L_2_HS2023.pdf

    Description

    This quiz covers the merge-sort algorithm, a fundamental concept in computer science for sorting arrays. It details the procedure of dividing arrays into subarrays and the merging process. Perfect for understanding time complexity and algorithm design.

    More Like This

    Merge Sort Algorithm Overview
    28 questions
    Merge Sort Algorithm Overview
    13 questions

    Merge Sort Algorithm Overview

    FastestGrowingSulfur8880 avatar
    FastestGrowingSulfur8880
    Use Quizgecko on...
    Browser
    Browser