Podcast
Questions and Answers
ویژگیهای ضرب دو ماتریس چیست؟
ویژگیهای ضرب دو ماتریس چیست؟
برای جمع دو ماتریس چه شرطی باید برقرار باشد؟
برای جمع دو ماتریس چه شرطی باید برقرار باشد؟
کدام اظهار نظر صحیح نیست در رابطه با تفاوت دو ماتریس؟
کدام اظهار نظر صحیح نیست در رابطه با تفاوت دو ماتریس؟
خصوصیت کدام بود که از ماتریس بالقوة نام ببرده شده است؟
خصوصیت کدام بود که از ماتریس بالقوة نام ببرده شده است؟
Signup and view all the answers
چگونگی تشکیل ماتریس واحد (identity matrix) چگونه است؟
چگونگی تشکیل ماتریس واحد (identity matrix) چگونه است؟
Signup and view all the answers
Study Notes
Matrices: Exploring Addition, Properties, Multiplication, Subtraction, and Inverses
Matrices are rectangular arrays of numbers that are widely used in various disciplines such as mathematics, computer science, and engineering. In this article, we'll delve into the fundamental aspects of matrices, covering addition, properties, multiplication, subtraction, and their inverses.
Addition of Matrices
Matrices can be added elementwise, provided that they have the same dimensions (number of rows and columns). To add two matrices A and B, simply add their corresponding elements:
[ A + B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ \vdots & \vdots & \ddots & \vdots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \ b_{21} & b_{22} & \cdots & b_{2n} \ \vdots & \vdots & \ddots & \vdots \ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \ \vdots & \vdots & \ddots & \vdots \ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix} ]
Properties of Matrices
Matrices have various properties, some of which include commutative property of addition (A + B = B + A), associative property of addition (A + (B + C) = (A + B) + C), and distributive property of addition over multiplication (A * (B + C) = A * B + A * C).
Matrix Multiplication
Matrix multiplication is performed by multiplying corresponding elements of matrices, which must conform to the rule that the number of columns in the first matrix equals the number of rows in the second matrix.
Let A be an m × n matrix and B be an n × p matrix. Then their product AB is an m × p matrix:
[ AB = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ \vdots & \vdots & \ddots & \vdots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \ b_{21} & b_{22} & \cdots & b_{2p} \ \vdots & \vdots & \ddots & \vdots \ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix} = \begin{bmatrix} \sum\limits_{k=1}^n a_{1k}b_{k1} & \sum\limits_{k=1}^n a_{1k}b_{k2} & \cdots & \sum\limits_{k=1}^n a_{1k}b_{kp} \ \sum\limits_{k=1}^n a_{2k}b_{k1} & \sum\limits_{k=1}^n a_{2k}b_{k2} & \cdots & \sum\limits_{k=1}^n a_{2k}b_{kp} \ \vdots & \vdots & \ddots & \vdots \ \sum\limits_{k=1}^n a_{mk}b_{k1} & \sum\limits_{k=1}^n a_{mk}b_{k2} & \cdots & \sum\limits_{k=1}^n a_{mk}b_{kp} \end{bmatrix} ]
Subtraction of Matrices
Matrix subtraction is simply the elementwise difference between corresponding entries of matrices with the same dimensions.
[ A - B = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \cdots & a_{1n} - b_{1n} \ a_{21} - b_{21} & a_{22} - b_{22} & \cdots & a_{2n} - b_{2n} \ \vdots & \vdots & \ddots & \vdots \ a_{m1} - b_{m1} & a_{m2} - b_{m2} & \cdots & a_{mn} - b_{mn} \end{bmatrix} ]
Inverse of Matrices
The inverse of a square matrix A, denoted as A⁻¹, is a matrix that satisfies the property that AA⁻¹ = A⁻¹A = I, where I is the identity matrix. Not all matrices have an inverse. A matrix is invertible if it is non-singular, meaning its determinant is non-zero.
Unlike the addition, multiplication, and subtraction of matrices, which are commutative and associative, matrix inversion is neither commutative nor associative in general.
With this overview in place, you are now equipped with the fundamentals of matrices, allowing you to tackle more complex topics in linear algebra and related fields.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Explore the basic concepts of matrices including addition, properties, multiplication, subtraction, and inverses. Understand how to perform operations like matrix addition, multiplication, and subtraction as well as the conditions for matrix inverses. Dive into the properties of matrices such as commutativity, associativity, and the rules for matrix multiplication.