Mathematica: Trigonometric e Logarithmique Identitates
47 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Qual del sequente expressiones es equivalente a $\sin(\theta + \beta)$?

  • $\cos \theta \cos \beta - \sin \theta \sin \beta$
  • $\cos \theta \cos \beta + \sin \theta \sin \beta$
  • $\sin \theta \cos \beta - \cos \theta \sin \beta$
  • $\sin \theta \cos \beta + \cos \theta \sin \beta$ (correct)
  • Es ver que $\cos(-\theta) = -\cos(\theta)$?

    False (B)

    Simplifica le expression: $\tan(\theta - \beta)$

    $\frac{\tan \theta - \tan \beta}{1 + \tan \theta \tan \beta}$

    $\sin(2\theta) = $ ______

    <p>$2 \sin \theta \cos \theta$</p> Signup and view all the answers

    Qual es le identitate de co-function pro $\cos(\frac{\pi}{2} - \theta)$?

    <p>$\sin(\theta)$ (A)</p> Signup and view all the answers

    Es $\tan(-\theta) = \tan(\theta)$?

    <p>False (B)</p> Signup and view all the answers

    Associa le sequente identitates trigonometric con lor expressiones correcte:

    <p>$\sin(\theta + \beta)$ = $\sin \theta \cos \beta + \cos \theta \sin \beta$ $\cos(\theta + \beta)$ = $\cos \theta \cos \beta - \sin \theta \sin \beta$ $\tan(\theta + \beta)$ = $\frac{\tan \theta + \tan \beta}{1 - \tan \theta \tan \beta}$</p> Signup and view all the answers

    Qual del sequente affirmationes es correcte re le logarithmo natural?

    <p>ln e = 1 (B)</p> Signup and view all the answers

    Es ver que $e^{ln x} = x$ pro omne valores de x?

    <p>False (B)</p> Signup and view all the answers

    Simplifica le expression: $ln(e^5)$

    <p>5</p> Signup and view all the answers

    Secundo le formulas de cambio de base, $log_b a = \frac{ln a}{______}$

    <p>ln b</p> Signup and view all the answers

    Qual es le equivalente de $ln(xy)$ ?

    <p>$ln(x) + ln(y)$ (B)</p> Signup and view all the answers

    Es ver que $a^m * a^n = a^{m*n}$?

    <p>False (B)</p> Signup and view all the answers

    $a^0 = ______$, ubi a ≠ 0.

    <p>1</p> Signup and view all the answers

    Associa le proprietates del exponentes con lor expressiones:

    <p>$a^m a^n$ = $a^{m+n}$ $(a^m)^n$ = $a^{mn}$ $\frac{a^m}{a^n}$ = $a^{m-n}$</p> Signup and view all the answers

    Qual es le objectivo de Emmanuel con le 'Maths Handbook and Study Guides'?

    <p>A demystificar le mathematicas e adjutar studentes a attinger lor potential. (C)</p> Signup and view all the answers

    Le libros de Emmanuel es solmente compatibile con certe libros de calculo.

    <p>False (B)</p> Signup and view all the answers

    Quales characteristicas distingue le libros de Emmanuel?

    <p>Clar, simple, visual e logic</p> Signup and view all the answers

    Emmanuel usa codification de colores pro facilitar ______, definitiones, formulas e recapitos de travalio passate.

    <p>explicationes</p> Signup and view all the answers

    Associa le sequente personas con lor rolos mentionate in le texto:

    <p>Emmanuel Chauke = Autor de 'Maths Handbook and Study Guides' Mr. Chauke T.E = Mentor de Emmanuel Prof Gopal Raja = Un del lecturers passate de Emmanuel Dr K.Adem = Un del lecturers passate de Emmanuel</p> Signup and view all the answers

    Qual es un characteristic principal del scriptura de Emmanuel?

    <p>Claritate e simplicitate. (C)</p> Signup and view all the answers

    Emmanuel solmente adjuta studentes qui ama le mathematicas e le logica.

    <p>False (B)</p> Signup and view all the answers

    Que assecura Emmanuel con su travalio?

    <p>Es actualisate e convenibile pro cursos de calculo e studentes del Curriculum National.</p> Signup and view all the answers

    In le exemplo a), qual identitate trigonometric es usate pro simplificar le equation?

    <p>cos 2𝑥 = 1 − 2sin2 𝑥 (C)</p> Signup and view all the answers

    In le equation sin 𝑥 + 2 = 0 del exemplo a), il existe un solution valide pro 𝑥.

    <p>False (B)</p> Signup and view all the answers

    In le exemplo b), post substituer sin 2𝑥, que es le proxime passo pro solver le equation?

    <p>Subtraher $6\cos x$ e $3$ de ambe lateres.</p> Signup and view all the answers

    In le exemplo a), le factores del equation quadratic $2sin^2 x + 3 sin x - 2 = 0$ es $(2 sin x - 1)$ e $(sin x + ______)$.

    <p>2</p> Signup and view all the answers

    Qual es le rango de $x$ in exemplo a)?

    <p>$-2π ≤ x ≤ 2π$ (B)</p> Signup and view all the answers

    In le exemplo b), le factor $(2 cos 𝑥 + 1)$ debe equalar a zero pro solver le equation.

    <p>True (A)</p> Signup and view all the answers

    In le exemplo b), que valor de sin x face le secunde factor equal a zero?

    <p>3</p> Signup and view all the answers

    Combine le equation trigonometric con le passo initial associate pro solver lo:

    <p>cos 2𝑥 − 3 sin 𝑥 = −1 = Applica le identitate de angulo duple sin 2𝑥 + sin 𝑥 = 6 cos 𝑥 + 3 = Subtrahe terminos pro equalisar a zero 4cos2 𝑥 + sin 2𝑥 − 1 = 0 = Reorganisa e factorisa sin 2𝑥 + 2 sin 𝑥 + cos 2 𝑥 + cos 𝑥 = 0 = Factorisa per gruppos</p> Signup and view all the answers

    Qual del sequente es un proprietate de un function?

    <p>Asymptotas (D)</p> Signup and view all the answers

    Un function assigna a cata elemento x in un insimul D exactemente duo elementos in un insimul E.

    <p>False (B)</p> Signup and view all the answers

    Qual es le formato general de un function linear?

    <p>f(x) = mx + c</p> Signup and view all the answers

    Le insimul de tote le valores de output (valores de f(x)) de un function es appellate le ______.

    <p>ambito</p> Signup and view all the answers

    Associa le sequente conceptos con lor definitiones:

    <p>Dominio = Le insimul de tote le valores de input (x) pro un function. Ambito = Le insimul de tote le valores de output (f(x)) pro un function. Asymptota = Un linea que le graphico de un function approxima ma nunquam crucia. Periodo = Le intervallo super qual un function periodic repete su valores.</p> Signup and view all the answers

    Solver pro x: $tan(x) = 3$

    <p>$x = 1.23 + \pi k, k \in \mathbb{Z}$ (B)</p> Signup and view all the answers

    Si $cos(x) = -1$, alora $x = 0 + 2\pi k, k \in \mathbb{Z}$

    <p>False (B)</p> Signup and view all the answers

    Solve pro $x$: $2 sin x + cos x = 0$

    <p>x = 0.464 + πk , k ∈ ℤ</p> Signup and view all the answers

    Qual es le dominio del function $f(x) = \sqrt{x+4}$?

    <p>$[-4, \infty)$ (A)</p> Signup and view all the answers

    Es le rango del function $f(x) = 2x - 1$ con dominio $[-1, 1]$ equal a $[-3, 1]$?

    <p>True (A)</p> Signup and view all the answers

    Si $f(x) = x^2$ con dominio $[-1, 3]$, qual es le maximo valor del rango?

    <p>9</p> Signup and view all the answers

    Pro le function $f(x) = \frac{x}{x-2}$, le function es indefinite quando $x$ es equal a ______.

    <p>2</p> Signup and view all the answers

    Qual es le rango del function $f(x) = x^2$ con dominio $[-1,3]$?

    <p>$[0, 9]$ (B)</p> Signup and view all the answers

    Es le dominio del function $f(x) = \frac{x+1}{x-1}$ equal a $[1, \infty)$?

    <p>False (B)</p> Signup and view all the answers

    Qual es le valor de $f(2)$ pro le function $f(x) = \frac{2x + 1}{2x}$?

    <p>1.25</p> Signup and view all the answers

    Apparea le functiones con lor dominio correspondente:

    <p>$f(x) = 2x - 1$, $-1 \leq x \leq 1$ = $[-1, 1]$ $f(x) = x^2$, $-1 \leq x \leq 3$ = $[-1, 3]$ $f(x) = \sqrt{x + 4}$ = $[-4, \infty)$ $f(x) = \frac{2x + 1}{2x}$, $1 \leq x \leq 4$ = $[1, 4]$</p> Signup and view all the answers

    Flashcards

    log e x

    Equivalente a ln x, la logarithm natural de x.

    Emmanuel Chauke

    An informative tutor skilled in math and logic education.

    ln a / log a

    Formula de cambio de base per logaritmi.

    Comprehensive guide for Introductory Algebra

    A book written to address common student struggles in algebra.

    Signup and view all the flashcards

    ln e

    La logarithm natural de e, resulta in 1.

    Signup and view all the flashcards

    Color coding in books

    A method used to enhance understanding by visually organizing information.

    Signup and view all the flashcards

    ln 1

    La logarithm natural de 1, resulta in 0.

    Signup and view all the flashcards

    Maths made Easy

    A subtitle that reflects the aim to simplify mathematics for students.

    Signup and view all the flashcards

    Demystifying Maths

    The objective to make math more accessible and understandable.

    Signup and view all the flashcards

    ln x = y

    Equivalente a e^y = x, relazione importante.

    Signup and view all the flashcards

    Differential and Integral Calculus

    Advanced topics in calculus that Emmanuel’s resources support.

    Signup and view all the flashcards

    ln xy

    La somma de ln x e ln y, ln xy = ln x + ln y.

    Signup and view all the flashcards

    Suitable for National Curriculum

    Emmanuel's materials align with educational standards set for students.

    Signup and view all the flashcards

    a^m * a^n

    Le proprietate: a^(m+n) quando a es igual.

    Signup and view all the flashcards

    a^0

    Qualque a non-zero raised to the zero es 1.

    Signup and view all the flashcards

    Logic in education

    A crucial component in understanding math subjects effectively.

    Signup and view all the flashcards

    Soluciones de ecuaciones trigonométricas

    Valores de 𝑥 que satisfacen ecuaciones como 3 cos 𝑥 − sin 𝑥 = 0.

    Signup and view all the flashcards

    Tangente

    Relación entre seno y coseno, tan 𝑥 = sin 𝑥 / cos 𝑥.

    Signup and view all the flashcards

    Dominio de una función

    Conjunto de todos los valores posibles de entrada (𝑥).

    Signup and view all the flashcards

    Rango de una función

    Conjunto de todos los valores posibles de salida (𝑓(𝑥)).

    Signup and view all the flashcards

    Funciones lineales

    Funciones que siguen la forma 𝑓(𝑥) = 𝑚𝑥 + 𝑐.

    Signup and view all the flashcards

    Asintotas

    Líneas que una gráfica se aproxima pero nunca toca.

    Signup and view all the flashcards

    Periodo de una función

    El valor mínimo para que una función se repita.

    Signup and view all the flashcards

    Amplitud

    La altura máxima de una función desde su línea central.

    Signup and view all the flashcards

    tan 2𝜃

    Formula for tangent of double angle: tan 2𝜃 = 1 - tan²𝜃

    Signup and view all the flashcards

    sin(𝜃 + 𝛽)

    Sum formula for sine: sin(𝜃 + 𝛽) = sin 𝜃 cos 𝛽 + cos 𝜃 sin 𝛽

    Signup and view all the flashcards

    sin(𝜃 − 𝛽)

    Difference formula for sine: sin(𝜃 − 𝛽) = sin 𝜃 cos 𝛽 - cos 𝜃 sin 𝛽

    Signup and view all the flashcards

    cos(𝜃 + 𝛽)

    Sum formula for cosine: cos(𝜃 + 𝛽) = cos 𝜃 cos 𝛽 - sin 𝜃 sin 𝛽

    Signup and view all the flashcards

    cos(𝜃 − 𝛽)

    Difference formula for cosine: cos(𝜃 − 𝛽) = cos 𝜃 cos 𝛽 + sin 𝜃 sin 𝛽

    Signup and view all the flashcards

    tan(𝜃 + 𝛽)

    Sum formula for tangent: tan(𝜃 + 𝛽) = (tan 𝜃 + tan 𝛽) / (1 - tan 𝜃 tan 𝛽)

    Signup and view all the flashcards

    tan(𝜃 − 𝛽)

    Difference formula for tangent: tan(𝜃 − 𝛽) = (tan 𝜃 - tan 𝛽) / (1 + tan 𝜃 tan 𝛽)

    Signup and view all the flashcards

    sin(−𝜃)

    Negative angle identity for sine: sin(−𝜃) = − sin 𝜃

    Signup and view all the flashcards

    Identidade do double angle

    A fórmula para coseno do ângulo dobrado: cos 2x = 1 - 2sin² x.

    Signup and view all the flashcards

    Equação quadrática

    Uma equação do tipo ax² + bx + c = 0, que pode ser fatorizada.

    Signup and view all the flashcards

    Fatoração

    O processo de reescrever uma expressão como o produto de fatores.

    Signup and view all the flashcards

    Intervalo de solução

    O domínio em que a solução de x é válida, como -2π ≤ x ≤ 2π.

    Signup and view all the flashcards

    Solução para sen x

    Os valores de x para os quais sen x = 0 pode levar a múltiplas soluções.

    Signup and view all the flashcards

    Cosseno e seno

    Funções trigonométricas que relacionam ângulos a lados em triângulos.

    Signup and view all the flashcards

    Identidade trigonométrica

    Uma equação envolvendo seno e cosseno que é verdadeira para todos os ângulos.

    Signup and view all the flashcards

    Substituição

    Trocar uma função por outra, como substituir sen 2x por 2sen x cos x.

    Signup and view all the flashcards

    Functio linear

    Functio de forma f(x) = ax + b, con dominio specific.

    Signup and view all the flashcards

    Dominio

    Conjunto de valores que x puede assumir en una functio.

    Signup and view all the flashcards

    Range (range)

    Conjunto de valores resultantes de la functio para el dominio dado.

    Signup and view all the flashcards

    f(x) = 2x − 1

    Functio linear con dominio [-1, 1], range [-3, 1].

    Signup and view all the flashcards

    f(x) = x^2

    Functio quadratica con dominio [-1, 3], range [1, 9].

    Signup and view all the flashcards

    f(x) = √(x + 4)

    Functio radical con dominio [-4, ∞), range [0, ∞).

    Signup and view all the flashcards

    Dominio de f(x) = x - 2 / x + 1

    Analizara el comportamiento de f(x) y sus limites.

    Signup and view all the flashcards

    f(x) = 2x + 2x / 2

    Functio non-linear con dominio [1, 4], range [2.5, 8.125].

    Signup and view all the flashcards

    Study Notes

    Topic: Overview

    • This document is an examination practice book for Differential and Integral Calculus.
    • The book is prepared by Mr. E. Chauke.
    • Photocopying the book without permission is illegal.

    Topic: Table Of Contents

    • Overview:
      • There is an algebra refresher
      • Information about the author
      • Acknowledgements
      • Purpose of the book.
      • Important messages for the students.
    • Chapter 1: Absolute Values/Modulus
    • Chapter 2: The Relationship between Radians and Degrees
    • Chapter 3: Solving Logarithmic and Trigonometric Equations
    • Chapter 4: Functions
    • Chapter 5: The Limit of a Function
    • Chapter 6: Derivatives of ordinary functions
    • Chapter 7: Derivatives of trigonometric functions
    • Chapter 8: Derivatives of exponential and logarithmic functions
    • Chapter 9: Implicit and Higher Order Differentiation
    • Chapter 10: Derivatives of the inverse trigonometric functions
    • Chapter 11: L'Hopital's Rule
    • Chapter 12: Rolle's & Mean Theorem
    • Chapter 13: Application of Calculus
    • Chapter 14: Integration
    • Chapter 15: The Areas Between the Curves
    • Chapter 16: The Arc Length
    • Summary and Formulas
    • Check Yourself Questions
    • Testbanks & Exams Papers
    • Memorandums
    • Trigonometry Tool-Box (Trigonometric ratios in right-angled triangles and identities.)
    • Fundamental Identities / Negative Angles (Sin(-0), cos(-0), tan(-0), cosec(-0), sec(-0), and cot(-0))
    • Trigonometric Quadrants
    • Periodic Formulas
    • Algebra Refresher
    • About the Author
    • Acknowledgements

    Topic: About The Author

    • Emmanuel Chauke is a post-graduate in Mathematical Sciences.
    • He has been giving extra lessons in Calculus and Algebra for three years.
    • He aims to demystify mathematics for students.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    Description

    Explora le identitates e proprietates fundamental del mathemathica, includente le formulas trigonometric e logarithmique. Responde a questiones sobre identitates, simplificationes, e co-functiones. Este quiz es utile pro studentes e le professores de mathemathica.

    More Like This

    Use Quizgecko on...
    Browser
    Browser