Machine Learning Fundamentals
6 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

ما هو نوع التعلم عندما يتم تدريب الخوارزمية على بيانات غير م贴بة؟

  • تعلم هيتش
  • تعلم لا مُراقب (correct)
  • تعلم مُراقب
  • تعلم مُكافئ
  • ما هو المodel الذي يتنبأ بمتغيّر نتيجة مستمر بالاعتماد على متغيرات المدخلات؟

  • الغابات العشوائية
  • الشبكات العصبية
  • الانحدار الخطي (correct)
  • أشجار القرار
  • ما هو مصطلح لما ي发生 عندما يكون النموذج مُكثفاً جداً ويؤدي أداءً جيداً على بيانات التدريب ولكنه لا يؤدي أداءً جيداً على بيانات جديدة؟

  • تجاوز التعلم (correct)
  • اجتياح النموذج
  • فقدان اللياقة
  • عدم ملاءمة
  • ما هو النوع من التعلم الذي ي涉 من تداخل مع البيئة والتلقي جزاءات أو مكافآت؟

    <p>تعلم مُكافئ</p> Signup and view all the answers

    ما هو النوع من النموذج الذي يتكون من عشرة أشجار قرار يجمعهن لإجراء التنبؤات؟

    <p>الغابات العشوائية</p> Signup and view all the answers

    ما هو مصطلح لما يحدث عندما يكون النموذج بسيطاً جداً ويفشل في التقاط الأنماط أو الهيكل في البيانات؟

    <p>عدم ملاءمة</p> Signup and view all the answers

    Study Notes

    Machine Learning

    Machine learning is a subset of artificial intelligence that involves training algorithms to learn from data and make predictions or decisions without being explicitly programmed.

    Types of Machine Learning:

    • Supervised Learning: The algorithm is trained on labeled data, where the correct output is already known. The goal is to learn a mapping between input data and the corresponding output labels.
    • Unsupervised Learning: The algorithm is trained on unlabeled data, and the goal is to discover patterns or structure in the data.
    • Reinforcement Learning: The algorithm learns by interacting with an environment and receiving feedback in the form of rewards or penalties.

    Machine Learning Algorithms:

    • Linear Regression: A linear model that predicts a continuous output variable based on one or more input features.
    • Decision Trees: A tree-based model that splits data into subsets based on features and makes predictions.
    • Random Forests: An ensemble of decision trees that combine to make predictions.
    • Neural Networks: A model inspired by the structure and function of the human brain, composed of layers of interconnected nodes (neurons).

    Key Concepts:

    • Overfitting: When a model is too complex and performs well on training data but poorly on new, unseen data.
    • Underfitting: When a model is too simple and fails to capture the underlying patterns in the data.
    • Bias-Variance Tradeoff: The tradeoff between the error introduced by a model's simplifying assumptions (bias) and the error introduced by the noise in the data (variance).

    Applications of Machine Learning:

    • Image and Speech Recognition: Machine learning algorithms can be trained to recognize patterns in images and speech, enabling applications such as facial recognition and voice assistants.
    • Natural Language Processing: Machine learning algorithms can be used to analyze and generate human language, enabling applications such as chatbots and language translation.
    • Recommendation Systems: Machine learning algorithms can be used to personalize recommendations for users based on their past behavior and preferences.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Discover the basics of machine learning, including types of machine learning, algorithms, key concepts, and applications. Learn how to train algorithms to make predictions and decisions without being explicitly programmed.

    Use Quizgecko on...
    Browser
    Browser