Podcast
Questions and Answers
Given that $a^4b^5=1$, what is the value of $\log_a(a^5b^4)$?
Given that $a^4b^5=1$, what is the value of $\log_a(a^5b^4)$?
- $4$
- $1$
- $5$ (correct)
- $9$
If $a^4b^5=1$, what is the value of $\log_b(a)$?
If $a^4b^5=1$, what is the value of $\log_b(a)$?
- $-\frac{5},{4}$
- $0$
- $1$
- $-\frac{4},{5}$ (correct)
If $a^4b^5=1$, what is the value of $\log_b(a^4)$?
If $a^4b^5=1$, what is the value of $\log_b(a^4)$?
- $1$
- $-\frac{5},{4}$
- $0$ (correct)
- $-\frac{1},{5}$
Given that $a^4b^5=1$, what is the value of $\log_a(a^5b^4)$?
Given that $a^4b^5=1$, what is the value of $\log_a(a^5b^4)$?
If $a^4b^5=1$, what is the value of $\log_b(a^4)$?
If $a^4b^5=1$, what is the value of $\log_b(a^4)$?
If $a^4b^5=1$, what is the value of $\log_b(a)$?
If $a^4b^5=1$, what is the value of $\log_b(a)$?
Flashcards are hidden until you start studying