Podcast
Questions and Answers
What is the primary characteristic of Fully-Connected Neural Networks?
What is the primary characteristic of Fully-Connected Neural Networks?
What is the primary application of Convolutional Neural Networks?
What is the primary application of Convolutional Neural Networks?
What is the primary disadvantage of Recurrent Neural Networks?
What is the primary disadvantage of Recurrent Neural Networks?
What is the maximum number of hidden layers used in Shallow Neural Networks?
What is the maximum number of hidden layers used in Shallow Neural Networks?
Signup and view all the answers
What type of data inputs do Convolutional Neural Networks generally deal with?
What type of data inputs do Convolutional Neural Networks generally deal with?
Signup and view all the answers
What is the equation used to approximate the relation between x1 and x2 in the ANN solution?
What is the equation used to approximate the relation between x1 and x2 in the ANN solution?
Signup and view all the answers
What is the purpose of the hidden layer in a Neural Network?
What is the purpose of the hidden layer in a Neural Network?
Signup and view all the answers
What is the primary advantage of Fully-Connected Neural Networks?
What is the primary advantage of Fully-Connected Neural Networks?
Signup and view all the answers
What is the primary application of Recurrent Neural Networks?
What is the primary application of Recurrent Neural Networks?
Signup and view all the answers
What is the characteristic of Deep Neural Networks?
What is the characteristic of Deep Neural Networks?
Signup and view all the answers
What is the term used to describe the process of finding the values of A, B, and C in the equation?
What is the term used to describe the process of finding the values of A, B, and C in the equation?
Signup and view all the answers
What type of data inputs do Fully-Connected Neural Networks generally deal with?
What type of data inputs do Fully-Connected Neural Networks generally deal with?
Signup and view all the answers
What is the primary advantage of Convolutional Neural Networks?
What is the primary advantage of Convolutional Neural Networks?
Signup and view all the answers
What is the minimum number of layers required in a Neural Network?
What is the minimum number of layers required in a Neural Network?
Signup and view all the answers
What is the purpose of the output layer in a Neural Network?
What is the purpose of the output layer in a Neural Network?
Signup and view all the answers
What type of equation is used in the ANN solution to approximate the relation between x1 and x2?
What type of equation is used in the ANN solution to approximate the relation between x1 and x2?
Signup and view all the answers
What is the primary purpose of the hidden layers in a Fully-Connected Neural Network?
What is the primary purpose of the hidden layers in a Fully-Connected Neural Network?
Signup and view all the answers
What is the main difference between the training data and testing data in a Neural Network?
What is the main difference between the training data and testing data in a Neural Network?
Signup and view all the answers
What is the equation that represents the relationship between the inputs and outputs in the illustrative example?
What is the equation that represents the relationship between the inputs and outputs in the illustrative example?
Signup and view all the answers
What is the purpose of the output layer in a Fully-Connected Neural Network?
What is the purpose of the output layer in a Fully-Connected Neural Network?
Signup and view all the answers
What is the term used to describe a Neural Network with only one layer of artificial neurons?
What is the term used to describe a Neural Network with only one layer of artificial neurons?
Signup and view all the answers
What is the term used to describe the process of adjusting the weights and biases of a Neural Network during training?
What is the term used to describe the process of adjusting the weights and biases of a Neural Network during training?
Signup and view all the answers
What is the main advantage of using a Fully-Connected Neural Network over a linear regression model?
What is the main advantage of using a Fully-Connected Neural Network over a linear regression model?
Signup and view all the answers
What is the purpose of the activation function in a Neural Network?
What is the purpose of the activation function in a Neural Network?
Signup and view all the answers
Study Notes
Artificial Neural Networks
- A simple neural network can be represented by the equation: 𝒇𝟏 : 𝒚 = 𝑨 ∗ 𝒙𝟏 + 𝑩 ∗ 𝒙𝟐 + 𝑪
- The task of the network is to find A, B, and C.
Neural Network Architecture
- A neural network can have multiple layers: input layer, hidden layer, and output layer.
- The number of layers and neurons in each layer can vary depending on the problem.
Neural Network Classification
- Neural networks can be classified into:
- Shallow Neural Networks (1 or 2 hidden layers)
- Deep Neural Networks (more than 2 hidden layers)
Shallow Neural Networks
- Use a maximum of two hidden layers to find mathematical relations between training data sets.
- Data sizes are typically limited to 1,000 examples.
Deep Neural Networks
- Have more than two hidden layers, which can be over 100 layers.
- Applications include:
- Fault detection and classification in power systems
- Load estimation for electric devices and power systems
- Optimization of solar and wind power generation
- Self-driving/autonomous cars
Fully-Connected Neural Networks (FCN)
- Also known as dense neural networks or multi-layer perceptron (MLP).
- Every neuron in one layer is connected to every neuron in the subsequent layer.
- Information flows from the input layer through one or more hidden layers to the output layer.
Convolutional Neural Networks (CNN)
- Building blocks of these networks are filters that extract relevant features using the convolution operation.
- Generally deal with “Matrices” data inputs.
Recurrent Neural Networks (RNN)
- Building blocks of these networks are neurons with recurrent loops in the hidden layer.
- Inputs are processed in both forward and backward directions.
- Generally deal with “Sequence” data inputs.
Neural Network Applications in Electrical Engineering
- Neural networks have been used in electrical engineering applications, such as:
- Fault detection and classification in electric devices
- Load estimation for electric devices and power systems
- Optimization of solar and wind power generation
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
This quiz is about linear regression using Artificial Neural Networks (ANN) and its application in solving equations.