Linear Algebra Equivalent Statements Flashcards
33 Questions
100 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the dimension of a square matrix A?

Dim(A) = n × n

If T_A: Rⁿ → Rⁿ is multiplication by A, then this statement is considered a definition or proof.

True

If A is invertible, then A⁻¹A equals the identity matrix.

True

The equation Ax = 0 has only the trivial solution if A is not invertible.

<p>False</p> Signup and view all the answers

The reduced row-echelon form of A is I(n) if A is invertible.

<p>True</p> Signup and view all the answers

A is expressible as a product of elementary matrices if A is invertible.

<p>True</p> Signup and view all the answers

The equation Ax = b is consistent for every n×1 matrix b if A is invertible.

<p>True</p> Signup and view all the answers

The equation ax = b has exactly one solution for every n×1 matrix b if A is invertible.

<p>True</p> Signup and view all the answers

Det(A) ≠ 0 if A is invertible.

<p>True</p> Signup and view all the answers

The range of T_A is Rⁿ if A is invertible.

<p>True</p> Signup and view all the answers

T_A is one-to-one if A is invertible.

<p>True</p> Signup and view all the answers

The column vectors of A are linearly independent if the rank of A equals n.

<p>True</p> Signup and view all the answers

The row vectors of A are linearly independent if the rank of A equals n.

<p>True</p> Signup and view all the answers

The column vectors of A span Rⁿ if A is invertible.

<p>True</p> Signup and view all the answers

The row vectors of A span Rⁿ if A is invertible.

<p>True</p> Signup and view all the answers

The column vectors of A form a basis for Rⁿ if A is invertible.

<p>True</p> Signup and view all the answers

The row vectors of A form a basis for Rⁿ if A is invertible.

<p>True</p> Signup and view all the answers

A has rank n if it is an n × n matrix.

<p>True</p> Signup and view all the answers

A has nullity 0 if it is invertible.

<p>True</p> Signup and view all the answers

The orthogonal complement of the nullspace of A is equal to Rⁿ if A is invertible.

<p>True</p> Signup and view all the answers

The orthogonal complement of the row space of A is {0} if A is invertible.

<p>True</p> Signup and view all the answers

(A^T)A is invertible if A is invertible.

<p>True</p> Signup and view all the answers

λ = 0 is not an eigenvalue of A if A is invertible.

<p>True</p> Signup and view all the answers

A is row equivalent to the n × n identity matrix if it has n pivot positions.

<p>True</p> Signup and view all the answers

A has n pivot positions if the reduced row-echelon form of A contains leading 1's.

<p>True</p> Signup and view all the answers

The equation Ax = 0 has only the trivial solution if A has full rank.

<p>True</p> Signup and view all the answers

The equation Ax = b has at least one solution for each b in Rn if A is invertible.

<p>True</p> Signup and view all the answers

The columns of A span Rn if A is not invertible.

<p>False</p> Signup and view all the answers

The linear transformation x → Ax maps Rn onto Rn if A is invertible.

<p>True</p> Signup and view all the answers

There is an n × n matrix C such that CA = I if A is invertible.

<p>True</p> Signup and view all the answers

There is an n × n matrix D such that AD = I if A is invertible.

<p>True</p> Signup and view all the answers

The columns of A form a basis of Rn if A is invertible.

<p>True</p> Signup and view all the answers

What does 'redech' refer to?

<p>reduced echelon form</p> Signup and view all the answers

Study Notes

Matrix Definitions and Properties

  • A square matrix A is defined by dimensions: Dim(A) = n×n, indicating it has n rows and n columns.
  • Multiplication by matrix A is represented as T_A: Rⁿ → Rⁿ.

Invertibility of Matrix A

  • A is invertible if A⁻¹A equals the identity matrix, confirming the existence of an inverse.
  • If the equation Ax = 0 has only the trivial solution (x = 0), A is guaranteed to be invertible.

Row and Column Echelon Forms

  • The reduced row-echelon form (RREF) of A is equal to I(n), the identity matrix, confirming A's invertibility.
  • Expressibility of A as a product of elementary matrices implies that it can be transformed into the identity matrix through row operations.

Consistency and Solutions of Linear Equations

  • The equation Ax = b is consistent for every n×1 matrix b, ensuring that solutions exist for all vectors in Rⁿ.
  • The equation ax = b has exactly one solution for every n×1 matrix b, further confirming the behavior of linear transformations.

Determinants and Ranges

  • A non-zero determinant (det(A) ≠ 0) confirms that matrix A is invertible.
  • The range of T_A being equal to Rⁿ signifies that all possible output vectors can be achieved through multiplication by A.

One-to-One Transformations

  • T_A is one-to-one if distinct input vectors lead to distinct output vectors, ensuring uniqueness in solutions.
  • The column vectors of A are linearly independent if Rrow(A) contains all non-zero columns, highlighting a lack of redundancy among columns.

Spanning and Bases

  • The row vectors of A are linearly independent if Rrow(A) holds all non-zero rows, indicating no linear combinations can lead to a nontrivial zero vector.
  • The column vectors span Rⁿ if they can generate every vector in Rⁿ through linear combinations.
  • Row vectors of A also span Rⁿ if they can similarly cover the space through combinations.

Basis and Rank

  • The column vectors of A form a basis for Rⁿ when they are linearly independent and span the entire space.
  • The row vectors form a basis for Rⁿ under the same linear independence and spanning criteria.
  • Matrix A has rank n if it contains n pivot positions, meaning all rows (or columns) are linearly independent.
  • A has nullity 0 if the null space contains only the zero vector, confirming that Ax = 0 only has the trivial solution.

Orthogonal Complements

  • The orthogonal complement of the nullspace of A equates to Rⁿ, indicating complete coverage of the vector space.
  • The orthogonal complement of the row space of A is {0}, reinforcing the notion of linear independence.

Invertibility of Product Matrices

  • (A^T)A is invertible if A is invertible, providing a relationship between a matrix and its transpose.

Eigenvalues

  • If λ = 0 is not an eigenvalue of A, then A is guaranteed to be invertible, impacting solutions and behaviors in linear transformations.

Equivalence and Relationships

  • A is row equivalent to the n×n identity matrix if it can be transformed into it through a series of elementary row operations.
  • Matrix A has n pivot positions, ensuring that each column and row in the RREF of A is non-zero.
  • Collected conditions guarantee that the columns of A form a basis of Rⁿ, providing full representation of the vector space.

Additional Concepts

  • "Redech" refers to the reduced row-echelon form, which plays a vital role in analyzing matrix properties and their implications in linear algebra.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Test your understanding of key concepts in Linear Algebra with these flashcards focusing on equivalent statements for square matrices and their properties. This quiz covers definitions and proofs of invertibility, solutions of equations, and reduced row-echelon forms.

More Like This

Use Quizgecko on...
Browser
Browser