Limits and Continuity

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

Which term describes the direct change of a solid into the gaseous state without passing through the liquid state?

  • Fusion
  • Sublimation (correct)
  • Evaporation
  • Condensation

Humidity refers to the amount of water vapor present in the air.

True (A)

The change of a liquid into a vapor state at any temperature below its boiling point is known as ______.

evaporation

What is the SI unit for measuring temperature?

<p>Kelvin (C)</p> Signup and view all the answers

What is the temperature at which a liquid starts boiling at atmospheric pressure called?

<p>boiling point</p> Signup and view all the answers

A liquid is defined as a form of matter that possesses rigidity and incompressibility.

<p>False (B)</p> Signup and view all the answers

What is the process of water evaporation from aerial parts of plants, especially leaves, called?

<p>Transpiration (D)</p> Signup and view all the answers

Match the state of matter with its compressibility characteristic:

<p>Solid = Incompressible Liquid = Almost Incompressible Gas = Compressible</p> Signup and view all the answers

What is the melting point of ice in Kelvin?

<p>273.16 K (A)</p> Signup and view all the answers

Define 'matter' in scientific terms.

<p>Anything that has mass and occupies space</p> Signup and view all the answers

The boiling point of water is 373K, which is equivalent to ______ in Celsius.

<p>100°C</p> Signup and view all the answers

According to kinetic theory, particles of matter are static and do not move.

<p>False (B)</p> Signup and view all the answers

What happens to the kinetic energy of particles as temperature increases?

<p>Increases (C)</p> Signup and view all the answers

Describe the force of attraction between particles of matter.

<p>particles of matter attract each other</p> Signup and view all the answers

Which of the following best describes a solid?

<p>Has definite shape and volume (C)</p> Signup and view all the answers

Density is calculated by multiplying mass and volume.

<p>False (B)</p> Signup and view all the answers

The temperature at which a solid changes into a liquid at atmospheric pressure is known as its ______ point.

<p>melting</p> Signup and view all the answers

Which of these represents the correct order of the force of attraction between particles in different states of matter?

<p>Solid &gt; Liquid &gt; Gas (A)</p> Signup and view all the answers

Match the physical state with its description:

<p>Boiling = Liquid to gas Freezing = Liquid to solid Sublimation = Solid to gas</p> Signup and view all the answers

What is 'latent heat of fusion'?

<p>The amount of heat energy that is needed to convert $\text{1 kg}$ of a solid into the liquid state at atmospheric pressure at its melting point.</p> Signup and view all the answers

Flashcards

What is Sublimation?

The process where a solid changes directly into the gaseous state without passing through the liquid state upon heating and back to the solid state when the temperature is lowered.

Latent Heat of Vaporisation

The heat energy required to change 1 kg of liquid to gas at atmospheric pressure at its boiling point.

Latent Heat of Fusion

The amount of heat energy that is needed to convert 1 kg of a solid into the liquid state at atmospheric pressure at its melting point.

What is Humidity?

The amount of water vapour present in the air.

Signup and view all the flashcards

What is Evaporation?

The change of liquid to a vapour state at any temperature below the boiling point of the liquid.

Signup and view all the flashcards

What is Transpiration?

The process of evaporation of water from the aerial parts of plants, especially the leaves.

Signup and view all the flashcards

What is the Melting Point?

The temperature at which a solid melts to become a liquid at atmospheric pressure.

Signup and view all the flashcards

What is the Boiling Point?

The temperature at which a liquid starts boiling at the atmospheric pressure.

Signup and view all the flashcards

What is the Freezing Point?

The temperature at which a liquid changes into solid by giving out heat at atmospheric pressure.

Signup and view all the flashcards

What is Density?

The mass occupied by a solid per unit volume and the image obtained by dividing the mass by the volume occupied.

Signup and view all the flashcards

What is Matter?

Anything that has mass and occupies space.

Signup and view all the flashcards

What are Solids?

Form of matter which possesses rigidity, is incompressible and has definite shape, size, and volume.

Signup and view all the flashcards

What are Liquids?

Form of matter which possesses fluidity, almost incompressible, and has a definite volume but no definite shape.

Signup and view all the flashcards

Study Notes

Unidad 4: Límites y Continuidad

  • El límite de f(x) cuando x tiende a x₀ es el valor al que f(x) se aproxima cuando x se aproxima a x₀.
  • Para todo ε > 0, existe un δ > 0 tal que si 0 < |x - x₀| < δ, entonces _ |f(x) - L| < ε_.
  • Límite lateral por la derecha: lim_(x→x₀⁺)_ f(x) = L
  • Límite lateral por la izquierda: lim_(x→x₀⁻)_ f(x) = L
  • El límite de una función en un punto existe si los límites laterales existen y son iguales, es decir, lim_(x→x₀)_ f(x) = L si y solo si lim_(x→x₀⁺)_ f(x) = lim_(x→x₀⁻)_ f(x) = L.
  • Si f(x) es continua en x₀, entonces lim_(x→x₀)_ f(x) = f(x₀).
  • Indeterminaciones: 0/0, ∞/∞, ∞ - ∞, 0 · ∞, 1^∞, 0⁰, ∞⁰

Resolución de Indeterminaciones

  • Para 0/0, se utilizan factorización, racionalización o la regla de L'Hôpital.
  • Para ∞/∞, se divide por la mayor potencia de x o se aplica la regla de L'Hôpital.
  • Para ∞ - ∞, se usa álgebra para transformar la expresión a la forma 0/0 o ∞/∞.

Regla de L'Hôpital

  • Si lim_(x→x₀)_ f(x)/g(x) es de la forma 0/0 o ∞/∞, entonces lim_(x→x₀)_ f(x)/g(x) = lim_(x→x₀)_ f'(x)/g'(x), siempre que el límite del lado derecho exista.
  • Límite Infinito: lim_(x→x₀)_ f(x) = ∞ (o -∞)
  • Límite en el infinito: lim_(x→∞)_ f(x) = L

Asíntotas

  • Si lim_(x→x₀)_ f(x) = ±∞, entonces x = x₀ es una asíntota vertical.
  • Si lim_(x→∞)_ f(x) = L (o lim_(x→-∞)_ f(x) = L), entonces y = L es una asíntota horizontal.
  • La asíntota oblicua y = mx + b cumple que m = lim_(x→∞)_ f(x)/x y b = lim_(x→∞)_ [f(x) - mx].

Continuidad de una función

  • Una función f(x) es continua en x = x₀ si:
    • f(x₀) está definida.
    • lim(x→x₀)_ f(x) existe.
    • lim(x→x₀)_ f(x) = f(x₀).

Discontinuidades

  • Existe lim_(x→x₀)_ f(x) pero no coincide con f(x₀) o f(x₀) no está definido.
  • Los límites laterales existen pero son diferentes.
  • Al menos uno de los límites laterales no existe.

Propiedades de las funciones continuas

  • La suma, resta, producto y cociente (denominador no cero) de funciones continuas es continua.
  • La composición de funciones continuas es continua.

Teoremas importantes

  • Teorema del Valor Intermedio (TVI): Si f(x) es continua en [a, b] y k está entre f(a) y f(b), existe al menos un c ∈ (a, b) tal que f(c) = k.
  • Teorema de Bolzano: Si f(x) es continua en [a, b] y f(a) y f(b) tienen signos opuestos, existe al menos un c ∈ (a, b) tal que f(c) = 0.
  • Teorema de Weierstrass: Si f(x) es continua en un intervalo cerrado [a, b], entonces _f(x) alcanza un máximo y un mínimo absoluto en ese intervalo.

Tipus de Matrius

  • Matriu rectangular: El nombre de files és diferent del nombre de columnes.
  • Matriu quadrada: El nombre de files és el mateix que el nombre de columnes.
  • Matriu fila: Té una única fila.
  • Matriu columna: Té una única columna.
  • Matriu transposada: S'obté a partir d'una altra intercanviant files per columnes.
  • Matriu simètrica: Matriu quadrada que coincideix amb la seva transposada.
  • Matriu identitat: Matriu quadrada amb diagonal principal composta per 1 i la resta per 0.
  • Matriu diagonal: Matriu quadrada amb tots els elements iguals a 0 excepte els de la diagonal principal.
  • Matriu triangular superior: Matriu quadrada amb elements per sota de la diagonal principal iguals a 0.
  • Matriu triangular inferior: Matriu quadrada amb elements per sobre de la diagonal principal iguals a 0.

Operacions amb Matrius

  • Suma de matrius: Només es poden sumar matrius amb les mateixes dimensions i se sumen els elements que ocupen la mateixa posició.
  • Producte d'un escalar per una matriu: Es multiplica l'escalar per cada element de la matriu.
  • Producte de matrius: Per multiplicar dues matrius, el nombre de columnes de la primera ha de ser igual al nombre de files de la segona.

Informatik

  • Informatik ist die Wissenschaft der systematischen Verarbeitung von Informationen, besonders der automatischen Verarbeitung mithilfe von Digitalrechnern.
  • Englische Übersetzungen sind Computer Science oder Informatics.

Teilgebiete der Informatik

  • Theoretische Informatik behandelt formale Sprachen, Automatentheorie, Berechenbarkeitstheorie und Komplexitätstheorie.
  • Technische Informatik behandelt Rechnerarchitektur, Rechnernetze und eingebettete Systeme.
  • Praktische Informatik behandelt Programmiersprachen, Algorithmen, Datenstrukturen, Software Engineering, Datenbanken und Künstliche Intelligenz.
  • Angewandte Informatik behandelt die Anwendung der Informatik in verschiedenen Bereichen.

Algorithmen

  • Ein Algorithmus ist eine eindeutige Handlungsvorschrift zur Lösung eines Problems.
  • Ein Algorithmus muss terminiert, eindeutig, effektiv und allgemein sein.

Datenstrukturen

  • Eine Datenstruktur ist eine bestimmte Art, Daten zu speichern und zu organisieren, um effizienten Zugriff und Modifikation zu ermöglichen.
  • Beispiele für Datenstrukturen sind Arrays, Listen, Bäume, Graphen und Hashtabellen.

Sortieralgorithmen

  • Bubblesort ist einfach, aber ineffizient mit einer Komplexität von $O(n^2)$.
  • Insertionsort ist effizient für kleine oder fast sortierte Daten, auch mit einer Komplexität von $O(n^2)$.
  • Mergesort ist effizient und stabil, mit einer Komplexität von $O(n log n)$.
  • Quicksort ist im Durchschnitt sehr effizient, aber im Worst-Case $O(n^2)$, mit einer durchschnittlichen Komplexität von $O(n log n)$.
  • Heapsort garantiert eine Komplexität von $O(n log n)$.

Change of Variables in Multiple Integrals

  • Theorem: For a $C^1$ transformation $T$ with non-zero Jacobian that maps a region $S$ in $uv$-space to a region $R$ in $xy$-space, and a continuous function $f$ on $R$, $\iint_R f(x, y) , dA = \iint_S f(x(u, v), y(u, v)) \left| \frac{\partial (x, y)}{\partial (u, v)} \right| , du , dv$, where $\frac{\partial (x, y)}{\partial (u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$ is the Jacobian.
  • Polar Coordinates: The transformation to rectangular coordinates is: x = r cos θ , _ y = r sin θ_ with Jacobian r. dA = r dr dθ
  • Triple Integrals:
    • _∭_E _f(x, y, z) dV = ∭_E f(x, y, z) dx dy dz
  • Cylindrical Coordinates:
    • x = r cos θ , _ y = r sin θ_ , _ z = z_ with Jacobian r. dV = r dz dr dθ _∭_E _f(x, y, z) dV = ∭_E f(r cos θ, r sin θ, z) r dz dr dθ

Thermodynamics

  • Is the study of energy, entropy and the interrelated properties of matter.
  • Has both Macroscopic and Microscopic Approaches

Thermodynamic Properties

  • Intensive Properties are independent of the amount of mass in the system, e.g. temperature, pressure, density.
  • Extensive Properties are dependent of the amount of mass in the system, e.g. mass, volume, energy.

Thermodynamic States and Processes

  • A thermodynamic state is the condition of a system as defined by its properties.
  • A thermodynamic process is a change in the state of a system.
  • A thermodynamic cycle is a series of processes that returns the system to its initial state.

Thermodynamic Equilibrium

  • A state where there are no changes in the macroscopic properties of the system.

Zeroth Law of Thermodynamics

  • If two systems are separately in thermal equilibrium with a third system, then they are also in thermal equilibrium with each other.
  • Temperature is a fundamental property that can be used to define thermal equilibrium.

Temperature Scales

  • Conversions are as follows: T(K) = T(°C) + 273.15, T(°F) = 1.8 ⋅ T(°C) + 32, T(R) = T(°F) + 459.67.

Energy

  • A measure of the capacity of a system to do work or transfer heat.
  • Kinetic Energy (KE): KE = 1/2mv²
  • Potential Energy (PE): PE = mgh

First Law of Thermodynamics

  • The change in the total energy of a system is equal to the net heat added to the system minus the net work done by the system: ΔU = Q - W.

Enthalpy

  • A thermodynamic property of a system, defined as the sum of the internal energy and the product of the pressure and volume: H = V + PV.

Specific Heat

  • The amount of heat required to raise the temperature of a unit mass of a substance by one degree.
  • cp = cv + R (for ideal gases)
  • Q = mcDT

Control Volume Analysis

  • Is a region in space through which mass and energy can flow.
  • Conservation of Mass: ∑in ṁ = ∑out ṁ
  • Conservation of Energy: Q̇ - Ẇ = ∑out ṁh - ∑in ṁh

Second Law of Thermodynamics

  • The total entropy of an isolated system can only increase of remin constant in ideal cases: DS = ∫ dQ/T (Reversible)/ DS > ∫ dQ/T (Irreversible)

Third Law of Thermodynamics

  • The entropy of a system approaches a minimum value at absolute zero temperature.

Thermodynamic Cycles

  • A series of thermodynamic processes that returns a system to its initial states.

Ideal Gas

  • A theoretical gas composed of randomly moving point particles that do not interact except when they collide elastically.
  • Equation of State: PV = nRT

Real Gas

  • A gas that does not behave as an ideal gas due to intermolecular interactions.

Phase Change

  • The transformation of a substance from one state of matter to another.
  • Saturation temperature is the temperature at which a phase change occurs at a given pressure.
  • Saturation pressure is the pressure at which a phase change occurs at a given temperature.

Psychrometrics

  • The study of the thermodynamic properties of moist air.

Thermodynamic Properties

  • Mathematical relationships between thermodynamic properties.
  • Relation Equations:
    • Clapeyron Equation: dP/dT = DH/TDV

Definicición de Espacio Vectorial

  • Un espacio vectorial sobre un campo K es un conjunto V no vacío, con dos operaciones: suma y producto por un escalar.

Suma en V:

  • (+) V x V --> V asocia a vectores u, v en V el vector u+v en V, verificando las siguientes propiedades:
    • Asociativa: (u+v)+w = u+(v+w), ∀ u, v, w ∈ V.
    • Conmutativa: u+v = v+u, ∀ u, v ∈ V.
    • Elemento Neutro: Existe 0 en V tal que u+0 = u, ∀ u ∈ V.
    • Elemento Opuesto: Para todo u en V, Existe (-u) en V tal que u+(-u) = 0.

Producto por un Escalar:

  • (*) K x V --> V asocia a un escalar lambda en K y un vector u en V el vector lambda u en V verificando las siguientes propiedades:
    • Asociativa Mixta: lambda (mu u) = (lambda mu) u, ∀ lambda, mu ∈K, ∀ u ∈V.
    • _Distributiva Respecto a Suma de Escalares: (lambda+mu)u=lambda + mu, ∀lambda, mu ∈K, ∀ u ∈V.
    • _Distributiva Respecto a Suma de Vectores: lambda (u+v)=lambda u+lambda v, ∀ lambda ∈K, ∀ u, v ∈V.
    • Elemento Unidad: Existe 1 en K tal que 1*u=u, ∀ u ∈V.

Ejemplos de Espacios Vectoriales:

  • Rn es EV sobre R.
  • Cn es EV sobre C.
  • Matrices nxm con elementos en R.
  • Polinomios con coeficientes en R.
  • Funciones reales de variable real continuas en [a,b].

Proposiciones

  • lambda*0 = 0 para todo lambda en K.
  • 0u= 0 para todo u en V.
  • -lambda u =- (lambda u) para todo lambda en K, 0 u en V.
  • lambda u ==0 implica lambda=0 o u=0.

Subespacios Vectoriales

  • Sea V un espacio vectorial sobre un cuerpo K. Un subconjunto S ⊆ V se dice que es un subespacio vectorial de V si S es un espacio vectorial sobre K con las mismas operaciones que V.
  • Sea V un espacio vectorial sobre un cuerpo K y sea S ⊆ V un subconjunto no vacío de V. Entonces, S es un subespacio vectorial de V si y sólo si:
    • u + v ∈ S, ∀ u, v ∈ S
    • λ · u ∈ S, ∀ λ ∈ K, ∀ u ∈ S

Operaciones con Subespacios

  • La intersección de subespacios vectoriales es un subespacio vectorial.
  • La unión de subespacios vectoriales no es, en general, un subespacio vectorial.
  • La suma de S1 y S2 se define como: S1 + S2 = {u + v | u ∈ S1, v ∈ S2}.
    • S1 + S2 es un subespacio vectorial de V.
  • Suma Directa: Es cuando la intersección de subespacios es cero.
  • La suma S1 + S2 es directa si y sólo si todo vector de S1 + S2 se puede escribir de forma única como suma de un vector de S1 y un vector de S2.
  • Subespacio Complementario: Si S es un subespacio vectorial de V, se dice que S es un subespacio complementario de S si V = S ⊕ S′.

Introduction to Reinforcement Learning

  • Definition: Training an agent to make a sequence of decisions.
  • Key Components:
    • Agent
    • Environment
    • State
    • Action
    • Reward

Characteristics of Reinforcement Learning

  • Trial-and-Error Learning
  • Delayed Reward
  • Exploration vs. Exploitation

Reinforcement Learning vs. Other Machine Learning Paradigms

  • Reinforcement Learning - Interaction with an environment, Reward signal, Maximize cumulative reward.
  • Supervised Learning - Labeled data, Correct labels, Predict labels.
  • Unsupervised Learning- Unlabeled data, No feedback, Discover hidden patterns.

Key Concepts

  • Policy: A strategy that the agent uses to determine the next action based on the current state.
    • Deterministic: a = π(s)
    • Stochastic: π(a|s) = P(At = a | St = s)

State-Value Function & Action-Value Function:

  • State-Value Function: Vπ(s) = Eπ[Gt | St = s]
  • Action-Value Function: Qπ(s, a) = Eπ[Gt | St = s, At = a]

Types of Reinforcement Learning

  • Model-Based vs. Model-Free
  • On-Policy vs. Off-Policy
  • Value-Based vs. Policy-Based
  • Q-Learning-is an Off-Policy, Model-Free RL Algorithm.

Q-Learning Update Rule

Q(s, a) ← Q(s, a) + α [R + γ maxaQ(s', a) -Q(s, a)]

Reinforcement Learning: Challenges:

  • Exploration-Exploitation Dilemma
  • Credit Assignment Problem
  • Non-Stationary Environment
  • Sample Efficiency

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Limits and Continuity in Calculus
4 questions
Limits and Continuity
25 questions
Limits and Continuity Math Exercises
24 questions
Use Quizgecko on...
Browser
Browser