Límites en el Infinito - Álgebra
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

¿Cuál es el valor del límite $\lim_{x \to \infty} \frac{10}{x}$?

  • 0 (correct)
  • infinito
  • 5
  • 10
  • ¿Qué valor tiene el límite $\lim_{x \to -\infty} (8x - 25)$?

  • 8
  • infinito
  • 25
  • -\infty (correct)
  • ¿Cuál es el resultado de $\lim_{x \to \infty} (-3x^4 + 5x^2 - 10)$?

  • infinito
  • -\infty (correct)
  • 0
  • 10
  • Al resolver $\lim_{x \to \infty} (x^2 - 3x)$, ¿qué valor se obtiene?

    <p>infinito</p> Signup and view all the answers

    ¿Qué es $\lim_{x \to -\infty} (2x^6 - 5x)$?

    <p>-\infty</p> Signup and view all the answers

    Study Notes

    Límites en el infinito

    • Cuando x tiende a infinito, una constante dividida por x tiende a cero
    • Cuando x tiende a infinito, un término lineal dividido por una constante tiende a infinito.
    • Cuando x tiende a infinito, un término con mayor potencia en el denominador, tiende a cero.
    • Cuando x tiende a infinito, un término con mayor potencia en el numerador, tiende a infinito.
    • Si el polinomio en el numerador tiene la misma potencia que el polinomio en el denominador, el límite es el coeficiente del término de mayor potencia en el numerador dividido por el coeficiente del término de mayor potencia en el denominador.
    • Respecto a la dirección del infinito, si x tiende a menos infinito, los signos de los términos se deben considerar según sea necesario.
    • Ejemplos:
      • l ́ım 10/x = 0 x→∞
      • l ́ım x/5 = ∞ x→∞
      • l ́ım −2x/7 = −∞ x→∞
      • l ́ım x² - 3x = ∞ x→∞
      • l ́ım -3x⁴ + 5x² - 10 = −∞ x→∞
      • l ́ım 8x - 25 = −∞ x→−∞
      • l ́ım 2x⁶ - 5x = ∞ x→−∞
      • l ́ım x - 35 + 5x² - 10 = ∞ x→−∞

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Este cuestionario te ayudará a entender los límites en el infinito cuando se trabaja con funciones racionales. Se abordarán conceptos clave como el comportamiento de funciones al acercarse a infinito y ejemplos específicos para ilustrar cada caso. Prepárate para poner a prueba tus conocimientos sobre este importante tema en álgebra.

    More Like This

    Use Quizgecko on...
    Browser
    Browser