Podcast
Questions and Answers
線性方程的標準形式是什么?
線性方程的標準形式是什么?
圖形函數的用途是什么?
圖形函數的用途是什么?
什麼是指數增長?
什麼是指數增長?
指數增長公式中的P是什么?
指數增長公式中的P是什么?
Signup and view all the answers
線性方程的圖形是什么?
線性方程的圖形是什么?
Signup and view all the answers
什么是线性方程的斜率?
什么是线性方程的斜率?
Signup and view all the answers
Qué es una característica de crecimiento exponencial?
Qué es una característica de crecimiento exponencial?
Signup and view all the answers
¿Cuál es la forma estándar de una función cuadrática?
¿Cuál es la forma estándar de una función cuadrática?
Signup and view all the answers
¿Cuál es la fórmula para resolver ecuaciones cuadráticas?
¿Cuál es la fórmula para resolver ecuaciones cuadráticas?
Signup and view all the answers
¿Qué es la operación de composición de funciones?
¿Qué es la operación de composición de funciones?
Signup and view all the answers
¿Qué es el vértice de una parábola?
¿Qué es el vértice de una parábola?
Signup and view all the answers
¿Qué es la función de adición de funciones?
¿Qué es la función de adición de funciones?
Signup and view all the answers
Study Notes
Linear Equations
- A linear equation is an equation in which the highest power of the variable(s) is 1.
- Standard form: Ax + By = C, where A, B, and C are integers, and A and B are not both zero.
- Slope-intercept form: y = mx + b, where m is the slope and b is the y-intercept.
- Point-slope form: y - y1 = m(x - x1), where (x1, y1) is a point on the line and m is the slope.
- Graphing linear equations:
- The graph of a linear equation is a straight line.
- The slope (m) determines the steepness and direction of the line.
- The y-intercept (b) determines the point at which the line crosses the y-axis.
Graphing Functions
- The graph of a function is a visual representation of the relationship between the input (x) and output (y) values.
- The graph can be used to:
- Identify the domain and range of the function.
- Determine the x-intercepts (roots) of the function.
- Identify the y-intercept of the function.
- Analyze the behavior of the function (increasing, decreasing, maxima, minima).
Exponential Growth
- Exponential growth occurs when a quantity increases by a fixed percentage at regular time intervals.
- Exponential growth formula: A = P(1 + r/n)^(nt), where:
- A is the amount of money accumulated after n years, including interest.
- P is the principal amount (initial investment).
- r is the annual interest rate (in decimal form).
- n is the number of times that interest is compounded per year.
- t is the time the money is invested or borrowed for, in years.
- Characteristics of exponential growth:
- Rapid acceleration in growth rate.
- Eventual surpassing of linear growth.
Quadratic Functions
- A quadratic function is a polynomial function of degree two, meaning the highest power of the variable(s) is two.
- Standard form: f(x) = ax^2 + bx + c, where a, b, and c are constants, and a ≠ 0.
- Graphing quadratic functions:
- The graph of a quadratic function is a parabola that opens upward or downward.
- The vertex of the parabola is the minimum or maximum point of the function.
- The axis of symmetry is the vertical line that passes through the vertex.
- Quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a, which solves quadratic equations of the form ax^2 + bx + c = 0.
Function Operations
- Function operations allow us to combine functions in different ways to create new functions.
- Types of function operations:
- Function addition: (f + g)(x) = f(x) + g(x)
- Function subtraction: (f - g)(x) = f(x) - g(x)
- Function multiplication: (f × g)(x) = f(x) × g(x)
- Function division: (f ÷ g)(x) = f(x) ÷ g(x), as long as g(x) ≠ 0
- Composition of functions: (f ∘ g)(x) = f(g(x)), where the output of g becomes the input for f.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.