Join Telegram Channel for 12th Board Notes
12 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Kje se lahko pridružite skupnosti NotesProvider12th_board?

Na Telegramu

Kje najdete povezavo do NotesProvider12th_board skupnosti?

Na Telegramu

Katero socialno omrežje je omenjeno večkrat v besedilu?

Telegram

Kje lahko najdete več informacij o NotesProvider12th_board?

<p>Na Telegramu</p> Signup and view all the answers

Kako se imenuje skupnost, ki jo omenjajo v besedilu?

<p>NotesProvider12th_board</p> Signup and view all the answers

Katero orodje za komunikacijo je najbolj promovirano v besedilu?

<p>Telegram</p> Signup and view all the answers

Derive an expression for torque acting on a rotating body.

<p>Torque $\tau$ acting on a rotating body is given by $\tau = I \alpha$, where $I$ is the moment of inertia and $\alpha$ is the angular acceleration.</p> Signup and view all the answers

State and prove the perpendicular axes theorem.

<p>The perpendicular axes theorem states that the moment of inertia of a planar body about an axis perpendicular to its plane is the sum of the moments of inertia about two perpendicular axes in the plane intersecting at the point where the perpendicular axis passes through. It can be proved using mathematical calculations and geometry.</p> Signup and view all the answers

State and prove the parallel axes theorem.

<p>The parallel axes theorem states that the moment of inertia of a body about any axis parallel to an axis through the center of mass is equal to the sum of the moment of inertia about the parallel axis through the center of mass and the product of the mass of the body and the square of the distance between the two parallel axes. The proof involves mathematical derivations and geometric considerations.</p> Signup and view all the answers

Find the moment of inertia of a system consisting of two point masses, each 1 kg, connected by a massless string of length 1 m, about an axis passing through the center of the string and perpendicular to the length of the string.

<p>The moment of inertia of the system is 0.25 kgm².</p> Signup and view all the answers

What are the dimensions of moment of inertia?

<p>The dimensions of moment of inertia are [M°L²Tº].</p> Signup and view all the answers

Calculate the moment of inertia of a thin rod about an axis passing through its center and perpendicular to its length.

<p>The moment of inertia of a thin rod about such an axis is ML²/12.</p> Signup and view all the answers

Study Notes

Skupnost NotesProvider12th_board

  • Pridružitev skupnosti NotesProvider12th_board poteka preko izbranega socialnega omrežja.
  • Povezava do skupnosti NotesProvider12th_board je dostopna na omenjenem socialnem omrežju.
  • Večkrat omenjeno socialno omrežje v besedilu ni posebej navedeno, vendar je ključno za dostop do skupnosti.
  • Več informacij o NotesProvider12th_board lahko najdete preko povezave ali na profilu skupnosti na omenjenem omrežju.
  • Ime skupnosti, omenjene v besedilu, je NotesProvider12th_board.
  • Glavno orodje za komunikacijo, promovirano v besedilu, ni specifično navedeno, vendar je verjetno povezano z izbranim socialnim omrežjem.

Mehanika

  • Izraz za torque na vrtečem telesu se nanaša na produkt razvoja sile in razdalje do vrtišča.
  • Prvi pravilnik o pravokotnih oseh trdi, da je trenutek vztrajnosti telesa o dveh pravokotnih oseh enak seštevku trenutkov vztrajnosti o teh oseh.
  • Drugi pravilnik o paralelnih oseh zahteva dodajanje mase in razdalje do nove osi, kar vpliva na trenutek vztrajnosti.
  • Sistem dveh točkovnih mas, vsaka po 1 kg, povezanih z brezmasnim stringom dolžine 1 m, ima skupni trenutek vztrajnosti pri osi v središču stringa enak 1 kg·m².
  • Dimenzije trenutka vztrajnosti so izrazite v kg·m².
  • Trenutek vztrajnosti tanke palice o osi, ki poteka skozi njen center in je pravokoten na dolžino, znaša (1/12)ml², kjer je m masa in l dolžina palice.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Learn how to join a Telegram channel providing notes for the 12th board exams. Stay updated on important study material and resources.

More Like This

Use Quizgecko on...
Browser
Browser