Podcast
Questions and Answers
What is the inverse of function f given by $f = ig{(-2, 0), (0, 1), (2, 3), (3, 4)ig}$?
What is the inverse of function f given by $f = ig{(-2, 0), (0, 1), (2, 3), (3, 4)ig}$?
What is the domain and range of the inverse of function f?
What is the domain and range of the inverse of function f?
Evaluate $f(f^{-1}(1))$ for the given functions.
Evaluate $f(f^{-1}(1))$ for the given functions.
What are the properties of the graph of function $f$ and its inverse $f^{-1}$?
What are the properties of the graph of function $f$ and its inverse $f^{-1}$?
Signup and view all the answers
What is $f^{-1}(f(2))$ for the given functions?
What is $f^{-1}(f(2))$ for the given functions?
Signup and view all the answers
Study Notes
Inverse of Function f
- The inverse of function f is denoted by f^(-1)
- f^(-1) is found by swapping the x and y values in the given points: f^(-1) = {(0, -2), (1, 0), (3, 2), (4, 3)}
Domain and Range of Inverse of Function f
- Domain of f^(-1) is the range of f: {-2, 0, 2, 3}
- Range of f^(-1) is the domain of f: {0, 1, 3, 4}
Evaluating f(f^(-1)(1))
- To evaluate f(f^(-1)(1)), first find f^(-1)(1) = 0
- Then, f(f^(-1)(1)) = f(0) = 1
Properties of Graph of Function f and its Inverse f^(-1)
- The graphs of f and f^(-1) are reflections of each other over the line y = x
- The domain of f is the range of f^(-1) and vice versa
- The range of f is the domain of f^(-1) and vice versa
Evaluating f^(-1)(f(2))
- To evaluate f^(-1)(f(2)), first find f(2) = 3
- Then, f^(-1)(f(2)) = f^(-1)(3) = 2
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Test your understanding of inverse functions with this quiz. Explore questions related to ordered pairs, linear, cubic root, square root, logarithmic, and exponential functions, along with detailed solutions. Practice algebraically and graphically checking answers using the properties of each function and its inverse. Strengthen your skills in solving inverse function problems step by step.