Podcast
Questions and Answers
किस त्रिभुजियों के कोण और पक्षों के बीच संबंध है?
किस त्रिभुजियों के कोण और पक्षों के बीच संबंध है?
साइन अंकित करता है?
साइन अंकित करता है?
कोसाइन अंकित करता है?
कोसाइन अंकित करता है?
त्रिभुजमित समीकरणों का प्रयोग होता है?
त्रिभुजमित समीकरणों का प्रयोग होता है?
Signup and view all the answers
किस क्षेत्र में त्रिकोणमिति का उपयोग करके पारंगत 3D वातावरण बनाने के लिए किया जाता है?
किस क्षेत्र में त्रिकोणमिति का उपयोग करके पारंगत 3D वातावरण बनाने के लिए किया जाता है?
Signup and view all the answers
किस क्षेत्र में त्रिकोणमिति का उपयोग करके संरचनाओं की डिजाइनिंग के लिए किया जाता है?
किस क्षेत्र में त्रिकोणमिति का उपयोग करके संरचनाओं की डिजाइनिंग के लिए किया जाता है?
Signup and view all the answers
त्रिकोणमिति का उपयोग करके क्या किया जाता है?
त्रिकोणमिति का उपयोग करके क्या किया जाता है?
Signup and view all the answers
कौन सा क्षेत्र सही है, जहाँ पैमाने और ऊंचाइयों की गणना के लिए त्रिकोणमिति का प्रयोग होता है?
कौन सा क्षेत्र सही है, जहाँ पैमाने और ऊंचाइयों की गणना के लिए त्रिकोणमिति का प्रयोग होता है?
Signup and view all the answers
किस त्रिभुज में 30°, 60°, और 90° के कोण होते हैं?
किस त्रिभुज में 30°, 60°, और 90° के कोण होते हैं?
Signup and view all the answers
किस त्रिभुज में, समकोण त्रिभुज के 60° के कोण के पास विपरीत पक्ष होता है?
किस त्रिभुज में, समकोण त्रिभुज के 60° के कोण के पास विपरीत पक्ष होता है?
Signup and view all the answers
sin(60°) का मान क्या है?
sin(60°) का मान क्या है?
Signup and view all the answers
cos(60°) का मान क्या है?
cos(60°) का मान क्या है?
Signup and view all the answers
tan(60°) का मान क्या है?
tan(60°) का मान क्या है?
Signup and view all the answers
Pythagoras के रूप में कौन-सा सिद्धांत स्थिर त्रिभुज में सीधे-कोण त्रिभुज में प्रयोगी है?
Pythagoras के रूप में कौन-सा सिद्धांत स्थिर त्रिभुज में सीधे-कोण त्रिभुज में प्रयोगी है?
Signup and view all the answers
संपूरक सिद्धांत क्या कहता है?
संपूरक सिद्धांत क्या कहता है?
Signup and view all the answers
Study Notes
Introduction to Trigonometry
Trigonometry is a branch of mathematics that deals with the relationships between the sides and angles of triangles. It is a fundamental subject in mathematics, and its applications can be found in a wide range of fields, including physics, engineering, computer science, and finance. In this article, we will explore the basics of trigonometry, including the trigonometric functions, identities, and applications.
Trigonometric Functions
The trigonometric functions are used to relate the sides and angles of a right triangle. The three basic trigonometric functions are sine (sin), cosine (cos), and tangent (tan). The sine of an angle is the ratio of the length of the opposite side to the length of the hypotenuse, while the cosine of an angle is the ratio of the length of the adjacent side to the length of the hypotenuse. The tangent of an angle is the ratio of the length of the opposite side to the length of the adjacent side.
For example, consider a right triangle with angles 30°, 60°, and 90°. In this case, the opposite side is the side adjacent to the angle of 60°, the adjacent side is the side adjacent to the angle of 30°, and the hypotenuse is the side opposite to the angle of 90°. The values of the sine, cosine, and tangent functions for the angle of 60° can be calculated as follows:
- sin(60°) = opposite/hypotenuse = √3/2
- cos(60°) = adjacent/hypotenuse = 1/2
- tan(60°) = opposite/adjacent = √3
Trigonometric Identities
Trigonometric identities are mathematical equations that relate the values of the trigonometric functions of an angle. Some of the most commonly used trigonometric identities include the Pythagorean theorem, the reciprocal identities, and the sum and difference identities.
The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides. Mathematically, this can be written as c^2 = a^2 + b^2, where c is the length of the hypotenuse and a and b are the lengths of the other two sides.
The reciprocal identities state that the reciprocal of a trigonometric function is equal to the corresponding function of the complementary angle. For example, sin(θ) = 1/cot(θ) and cos(θ) = 1/tan(θ).
The sum and difference identities relate the values of the sine and cosine functions of two angles. The sum identity states that sin(θ + φ) = sin(θ)cos(φ) + cos(θ)sin(φ), while the difference identity states that sin(θ - φ) = sin(θ)cos(φ) - cos(θ)sin(φ).
Applications of Trigonometry
Trigonometry has a wide range of applications in various fields. In physics, trigonometry is used to calculate the distances and heights of objects, as well as to analyze the motion of objects. In engineering, trigonometry is used to design structures, such as bridges and buildings, and to analyze the stresses and strains on these structures. In computer science, trigonometry is used in graphics and game development to create realistic 3D environments. In finance, trigonometry is used to calculate the future values of investments and to analyze the risks and returns of different investment strategies.
Conclusion
Trigonometry is a fundamental subject in mathematics that deals with the relationships between the sides and angles of triangles. It has a wide range of applications in various fields, including physics, engineering, computer science, and finance. Understanding the basics of trigonometry, including the trigonometric functions, identities, and applications, is essential for success in these fields.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Explore the fundamentals of trigonometry, including trigonometric functions, identities, and real-world applications in fields such as physics, engineering, computer science, and finance. Understand the relationships between the sides and angles of triangles and the essential concepts of this mathematical branch.