ଦର୍ଶନୀୟତା ଓ ଯୁକ୍ତି (Introduction to Logic)
13 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

ହାଇପୋଥେଟିକାଲ୍ ଶିଲୋଗିଜ୍‌ ଦ୍ୱାରା କଣ ସୂଚିତ କରାଯାଇଛି?

  • ଯଦି p, ତେବେ r (correct)
  • ଯଦି p, ତେବେ q (correct)
  • ଯଦି q, ତେବେ p
  • ଯଦି q ତାହାର ପରେ r
  • ଡିସଜଙ୍କଟିଭ୍ ସିଲୋଗିଜମ୍ କ'ଣ ତାଲୁକ୍ ରଖେ?

  • ପୂର୍ଣ୍ଣ କଥା ଅତ୍ୟାଧିକ କରିବା
  • p ସତ୍ୟ ହେଲେ q
  • P କିମ୍ବା q (correct)
  • q ତେବେ r
  • ଏଠାରେ କୌଣସି ଫ୍ୟାଲେସୀ ନହିଁ, କାହିଁକି?

  • ଅଡ୍ ହୋମିନେମ୍
  • ଗତିମାନ କଥା (correct)
  • ଫାଲ୍ସ ଡିଲେମା
  • ସ୍ଟ୍ର କାମ୍
  • ଫର୍ମାଲ୍ ଲୋଜିକ୍ କ'ଣ କୌଣସି ଜିନିଷ ଉପରେ ନିର୍ଭର କରେ?

    <p>ନିଶ୍ଚିତ ପ୍ରତିଷ୍ଠା</p> Signup and view all the answers

    ଭୁଲ ମାନିବା ଗୁଣାଙ୍କ ଦେଖାଯାଏ କ'ଣ?

    <p>ସ୍ରୋତାଙ୍କର ସମ୍ମାନ</p> Signup and view all the answers

    ଲଜିକ୍ କ'ଣ?

    <p>ମିଳନସାର ନୀତିକୁ ଅଧ୍ୟୟନ କରିବା</p> Signup and view all the answers

    ସାଧାରଣ ବିବେଚନାର ବିଶେଷତା କ'ଣ?

    <p>ଏହାକୁ ଛୋଟ ବିବେଚନାରେ ବାଣ୍ଟାଇ ନାହିଁ</p> Signup and view all the answers

    କୋଣସି ସଂସ୍ଥାପନା କେବଳ ସତ୍ୟ ସମୟରେ ମିଳିଧାଲା କେଉଁଟା?

    <p>ହାଁ</p> Signup and view all the answers

    ଯଦି ଏହା ସତ୍ୟ ହୁଏ, ତେବେ ଏହା କେବେ ବୁଝ ନାହିଁ?

    <p>ଯଦି...ତେବେ...ତେବେ</p> Signup and view all the answers

    ଧୈର୍ଯ୍ୟର ତାତ୍ତ୍ୱିକ ସୂତ୍ର କ'ଣ?

    <p>ପ୍ରମାଣ ଦେଇଥିବା</p> Signup and view all the answers

    ବିଗତ ସମୟରେ ଯାଞ୍ଚ ନହେଲେ କଣସବୁ?

    <p>ଲଜିକ୍ ବିକାଶ</p> Signup and view all the answers

    ଦ୍ୱାରା ବାଧ୍ୟକରେ ସଠିକ କ'ଣ?

    <p>ଏକ ପ୍ରାଧିକାରୀ ସୂତ୍ର</p> Signup and view all the answers

    ସମଗ୍ରୀର ସତ୍ୟ ଛୋଟ କ'ଣ?

    <p>ମୂଳ ସୂତ୍ର ସାଧାରଣ</p> Signup and view all the answers

    Study Notes

    Introduction to Logic

    • Logic is the study of valid reasoning, examining principles of correct inference and argumentation.
    • Logic distinguishes between sound and unsound arguments.
    • Logic is crucial in mathematics, philosophy, computer science, and law.

    Types of Statements

    • Statements are declarative sentences, either true or false.
    • Simple statements cannot be broken down into smaller statements.
    • Compound statements combine two or more simple statements using logical connectives (e.g., and, or, if...then).
    • Examples of logical connectives:
      • AND: True only if both component statements are true.
      • OR: True if at least one component statement is true.
      • NOT: Reverses the truth value of the component statement.
      • IF...THEN: True unless a true statement leads to a false statement.

    Logical Operators

    • Negation: The opposite truth value of a statement (denoted by ¬ or ~).
    • Conjunction: "And" (denoted by ∧).
    • Disjunction: "Or" (denoted by ∨).
    • Conditional: "If...then" (denoted by →). The "if" part is the hypothesis, the "then" part is the conclusion. A conditional statement is false only when the hypothesis is true and the conclusion is false.
    • Biconditional: "If and only if" (denoted by ↔). True when both component statements have the same truth value.

    Truth Tables

    • Truth tables determine compound statement truth values for all possible component truth value combinations. They are essential for analyzing argument validity.
    • A well-constructed truth table produces consistent results matching the logic operators.

    Arguments and Validity

    • Arguments are sets of statements (premises) supporting a conclusion.
    • Deductive arguments aim to provide conclusive support for the conclusion; if premises are true, the conclusion must be true.
    • Inductive arguments provide probable support for the conclusion; the conclusion is likely, but not guaranteed, if premises are true.
    • Validity: In a deductive argument, validity means the conclusion logically follows the premises, regardless of premise truth. A valid argument with true premises is sound.

    Types of Deductive Arguments

    • Modus Ponens: If p, then q. P. Therefore, q.
    • Modus Tollens: If p, then q. Not q. Therefore, not p.
    • Hypothetical Syllogism: If p, then q. If q, then r. Therefore, if p, then r.
    • Disjunctive Syllogism: P or q. Not p. Therefore, q.

    Fallacies

    • Fallacies are errors in reasoning leading to invalid arguments.
    • Examples of common fallacies:
      • Ad hominem: Attacking the person, not the argument.
      • Straw man: Misrepresenting an argument to attack it easily.
      • Appeal to authority: Claiming something's true because an authority said it.
      • False dilemma (either/or fallacy): Presenting only two options when more exist.

    Formal Logic

    • Formal logic uses symbolic representations of arguments.
    • Quantifiers express how many items in a category meet a condition.
      • Universal quantifier (∀): For all.
      • Existential quantifier (∃): There exists.

    Informal Logic

    • Informal logic evaluates natural language arguments, identifying strengths and weaknesses without rigid rules.
    • Critical thinking evaluates and analyzes arguments, separating good reasoning from poor reasoning.

    Applications of Logic

    • Logic is used in mathematics (proofs), computer science (programming), philosophy (evaluating arguments), law (reasoning), and everyday life (assessing arguments, problem-solving).

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    ଏହି କ୍ୱିଜ୍ ଦର୍ଶନୀୟତା ଓ ଯୁକ୍ତିର ମୂଳ ନିୟମ ଓ ଭିନ୍ନ ପ୍ରକାରର ବାକ୍ୟଗୁଡିକୁ ଅନୁସନ୍ଧାନ କରିବ। ଏହା ସଠିକ୍ ତଥା ଅସଠିକ୍ କ୍ରମରେ ବିଷୟଗତ ବିଶ୍ଳେଷଣ କରେ, ଯାହା ବିଭିନ୍ନ ବିଭାଗରେ ଦ୍ୱାରା ଗୁରୁତ୍‌ବ ରହୁଥାଏ।

    More Like This

    Use Quizgecko on...
    Browser
    Browser