Information Theory: Entropy Function
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What does the entropy of a random variable measure?

  • The probability distribution of the variable
  • The maximum value the variable can take
  • The actual values of the variable
  • The average uncertainty of the variable (correct)
  • Which formula correctly represents the entropy of a discrete random variable X?

  • H(X) = ∑ P(x) log(K)
  • H(X) = ∑ P(x) log(P(x))
  • H(X) = -∑ P(x) log(P(x)) (correct)
  • H(X) = -∑ P(x) log(K)
  • When is the entropy maximized for a random variable X that can take on K values?

  • When X is uniformly distributed among K values (correct)
  • When X has a mean of zero
  • When X is normally distributed
  • When X is skewed towards one value
  • What is the value of entropy H(X) when a random variable has a probability distribution of either P=0 or P=1?

    <p>0 bits</p> Signup and view all the answers

    What is the significance of the base 'b' in the entropy formula?

    <p>It determines the scale of measurement for entropy.</p> Signup and view all the answers

    Study Notes

    Entropy Function

    • Entropy measures the uncertainty of a random variable.
    • For a discrete random variable ( X ) with alphabet ( x ) and probability mass function ( P(x) = \text{Pr}{X = x} ).
    • Entropy ( H(X) ) is defined as: [ H(X) = -\sum_{x \in X} P(x) \log_b P(x) ]
    • ( b ) denotes the base of the logarithm, influencing units of measurement (bits, Hartleys, or nats).

    Characteristics of Entropy

    • Represents the average information contained in a random variable ( X ).
    • Depends solely on the distribution of ( X ), not the specific values ( X ) can take.
    • Always greater than or equal to zero, ( H(X) \geq 0 ).

    Example of Binary Entropy

    • For random variable ( X ) taking values:
      • ( 0 ) with probability ( 1-p )
      • ( 1 ) with probability ( p )
    • Entropy given by: [ H(X) = -p \log p - (1-p) \log (1-p) ]
    • Denoted sometimes as ( H(p, 1-p) ).
    • Maximum entropy occurs when ( p = 0.5 ), and entropy is zero when ( p = 0 ) or ( p = 1 ).

    Uniform Distribution and Maximum Entropy

    • For a random variable ( X ) taking ( K ) values, entropy is maximized when ( X ) is uniformly distributed among these values.
    • In this case: [ H(X) = \log K ]

    Calculating Entropy

    • Scenarios where: [ H(X) = -\sum_{x \in X} P(x) \log \left(\frac{1}{P(x)}\right) ]
    • Using Jensen's inequality for convex functions: [ \sum \lambda f(x) \leq f\left(\sum \lambda x\right) ]
    • Resulting inequality shows: [ H(X) \leq \log K ]
    • Indicates that maximum entropy ( H(X) ) occurs at ( \log K ) when uniformly distributed.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    lec(5)Entropy.pptx

    Description

    This quiz covers the fundamentals of entropy in information theory, focusing on its definition and calculation involving discrete random variables. Participants will explore the concept of uncertainty and how it is quantified through the entropy function. Test your understanding of how probability mass functions relate to entropy.

    More Like This

    Entropy and Most Probable Distribution
    20 questions
    Entropy Function Overview
    5 questions

    Entropy Function Overview

    StylishSpessartine avatar
    StylishSpessartine
    Use Quizgecko on...
    Browser
    Browser