Graphs: Linear, Quadratic, and Trigonometric
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What indicates a line with a positive slope in a linear graph?

  • The line crosses the y-axis below the x-axis.
  • The line slopes downward from left to right.
  • The line slopes upward from left to right. (correct)
  • The line is horizontal.
  • What is true about the vertex of a quadratic graph?

  • It is the point where the graph crosses the y-axis.
  • It is always located on the x-axis.
  • It has no effect on the parabola's shape.
  • It marks the highest or lowest point of the parabola. (correct)
  • Which statement about the trigonometric functions is accurate?

  • The tangent function has a period of $2\pi$.
  • All trigonometric functions have the same amplitude.
  • The cosine function has a vertical asymptote.
  • The sine function has a period of $2\pi$. (correct)
  • What is the y-intercept of the exponential function typically represented as $y = a * b^x$?

    <p>It is at $(0, a)$ where $a &gt; 0$.</p> Signup and view all the answers

    What is the domain of the logarithmic function represented as $y = log_b(x)$?

    <p>x &gt; 0.</p> Signup and view all the answers

    Study Notes

    Linear Graphs

    • Definition: A graph representing a linear equation (y = mx + b).
    • Slope (m): Indicates the steepness and direction of the line.
      • Positive slope: upward line.
      • Negative slope: downward line.
    • Y-intercept (b): Point where the graph crosses the y-axis.
    • Key Characteristics:
      • Straight line.
      • Continuous with no curves.
      • Domain and range: all real numbers.

    Quadratic Graphs

    • Definition: A graph of a quadratic function (y = ax^2 + bx + c).
    • Shape: Parabola (opens upward if a > 0, downward if a < 0).
    • Vertex: The highest or lowest point of the parabola.
    • Axis of Symmetry: A vertical line through the vertex.
    • X-intercepts: Points where the graph crosses the x-axis (found using the quadratic formula).
    • Y-intercept: Point where x = 0 (y = c).

    Trigonometric Graphs

    • Functions: Sine (sin), Cosine (cos), Tangent (tan).
    • Periodicity: Trig functions are periodic, with specific periods.
      • Sin and Cos: Period of 2π.
      • Tan: Period of π.
    • Key Characteristics:
      • Amplitude: Maximum vertical distance from the midline (for sin and cos).
      • Phase Shift: Horizontal shift of the graph.
    • Key Points:
      • Sin(0) = 0, Cos(0) = 1, Tan(0) = 0.
      • Sin(π/2) = 1, Cos(π/2) = 0, Tan(π/4) = 1.

    Exponential Graphs

    • Function: Generally in the form y = a * b^x (a > 0, b > 1).
    • Growth: Rapid increase (if b > 1) or decrease (if 0 < b < 1).
    • Y-intercept: Always at (0, a).
    • Asymptote: The horizontal line y = 0 (x-axis) acts as a horizontal asymptote.
    • Key Characteristics:
      • Domain: All real numbers.
      • Range: y > 0.

    Logarithmic Graphs

    • Function: Inverse of exponential functions, typically y = log_b(x).
    • Characteristics:
      • Vertical asymptote at x = 0.
      • Passes through (1, 0) since log_b(1) = 0.
    • Growth: Slowly increases; grows without bound but never touches the y-axis.
    • Domain and Range:
      • Domain: x > 0.
      • Range: All real numbers.

    Linear Graphs

    • Represented by a linear equation: y = mx + b
    • Slope (m) determines steepness and direction of the line:
      • Positive slope: upward line
      • Negative slope: downward line
    • Y-intercept (b) is where the graph crosses the y-axis
    • Always a straight line, continuous with no curves
    • Domain and range: all real numbers

    Quadratic Graphs

    • Represented by a quadratic function: y = ax^2 + bx + c
    • Shaped like a parabola
      • Opens upward if a is positive
      • Opens downward if a is negative
    • Vertex: highest or lowest point of the parabola
    • Axis of Symmetry: vertical line passing through the vertex
    • X-intercepts: points where the graph crosses the x-axis, found using the quadratic formula
    • Y-intercept: point where x = 0 (y = c)

    Trigonometric Graphs

    • Functions: Sine (sin), Cosine (cos), Tangent (tan)
    • Periodic: repeat in cycles
      • Sin and Cos: period of 2π
      • Tan: period of π
    • Key aspects:
      • Amplitude: maximum vertical distance from the midline (for sin and cos)
      • Phase Shift: horizontal shift of the graph
      • Key Points:
        • Sin(0) = 0, Cos(0) = 1, Tan(0) = 0
        • Sin(π/2) = 1, Cos(π/2) = 0, Tan(π/4) = 1

    Exponential Graphs

    • Generally in the form: y = a * b^x (where a > 0 and b > 1)
    • Exhibits rapid growth if b > 1, rapid decrease if 0 < b < 1
    • Y-intercept always at (0, a)
    • Horizontal asymptote at y = 0 (x-axis)
    • Domain: all real numbers
    • Range: y > 0

    Logarithmic Graphs

    • Function: Inverse of exponential functions, typically y = log_b(x)
    • Characteristics:
      • Vertical asymptote at x = 0
      • Passes through (1, 0) since log_b(1) = 0
      • Slowly increases; grows without bound but never touches the y-axis
    • Domain: x > 0
    • Range: all real numbers

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Test your understanding of different types of graphs including linear, quadratic, and trigonometric. The quiz covers definitions, key characteristics, and properties of each graph type. Challenge yourself to apply these concepts to various scenarios.

    More Like This

    Use Quizgecko on...
    Browser
    Browser