Geometry: Similar Figures and Triangles
8 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Two rectangles are similar. One rectangle has a length of 8 cm and a width of 5 cm. The other rectangle has a length of 12 cm. What is the width of the second rectangle?

  • 7.5 cm (correct)
  • 6 cm
  • 10 cm
  • 9 cm
  • If two triangles are similar, which of the following statements is NOT always true?

  • The triangles have the same shape.
  • The corresponding sides are proportional.
  • The corresponding angles are congruent.
  • The triangles have the same area. (correct)
  • A tree casts a shadow that is 15 meters long. At the same time, a 2-meter tall person casts a shadow that is 3 meters long. What is the height of the tree?

  • 10 meters (correct)
  • 6 meters
  • 12 meters
  • 8 meters
  • A scale drawing of a rectangular room is 5 cm long by 3 cm wide. The actual room is 10 meters long. What is the actual width of the room?

    <p>6 meters (A)</p> Signup and view all the answers

    Triangle ABC is similar to triangle DEF. If AB = 6 cm, BC = 8 cm, and DE = 9 cm, what is the length of EF?

    <p>12 cm (B)</p> Signup and view all the answers

    A map has a scale of 1:25,000. If two towns are 5 cm apart on the map, what is the actual distance between the towns?

    <p>12.5 km (D)</p> Signup and view all the answers

    Which of the following is NOT a criterion for proving two triangles similar?

    <p>Side-Side-Angle (SSA) (D)</p> Signup and view all the answers

    Two similar triangles have a scale factor of 3:4. If the perimeter of the smaller triangle is 12 cm, what is the perimeter of the larger triangle?

    <p>16 cm (B)</p> Signup and view all the answers

    Flashcards

    Similar Figures

    Figures with the same shape but not necessarily the same size.

    Congruent Angles

    Corresponding angles in similar figures are equal.

    Proportional Sides

    The sides of similar figures have a constant ratio.

    Scale Factor

    The ratio of corresponding sides in similar figures.

    Signup and view all the flashcards

    Polygons Similarity

    Polygons are similar if angles are congruent and sides are proportional.

    Signup and view all the flashcards

    AA Similarity Postulate

    Two triangles are similar if two angles of one are congruent to two of another.

    Signup and view all the flashcards

    SSS Similarity Theorem

    Triangles are similar if their corresponding sides are proportional.

    Signup and view all the flashcards

    SAS Similarity Theorem

    Triangles are similar if an angle is congruent and the sides including the angle are proportional.

    Signup and view all the flashcards

    Study Notes

    Definition and Characteristics

    • Similar figures are figures that have the same shape but not necessarily the same size.
    • Corresponding angles in similar figures are congruent (equal).
    • Corresponding sides in similar figures are proportional (have the same ratio).

    Proportional Sides

    • The ratio of corresponding sides in similar figures is constant.
    • This ratio is known as the scale factor.
    • If the scale factor is greater than 1, the larger figure is an enlargement of the smaller figure.
    • If the scale factor is between 0 and 1, the smaller figure is a reduction of the larger figure.

    Similar Polygons

    • Two polygons are similar if their corresponding angles are congruent and their corresponding sides are proportional.
    • The symbol for similarity is ~. For example, if polygon ABCDE is similar to polygon FGHIJ, we write ABCDE ~ FGHIJ.
    • This applies to all polygons (triangles, quadrilaterals, pentagons, etc.).

    Similar Triangles

    • Similar triangles have the same shape, but potentially different sizes.
    • A triangle can be proven similar to another if:
      • Angle-Angle (AA) Similarity Postulate: If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.
      • Side-Side-Side (SSS) Similarity Theorem: If the corresponding sides of two triangles are proportional, then the triangles are similar.
      • Side-Angle-Side (SAS) Similarity Theorem: If an angle of one triangle is congruent to an angle of another triangle, and the sides including those angles are proportional, then the triangles are similar.

    Applications

    • Similar figures and their properties are useful in many applications, including:
      • Finding unknown lengths in similar figures.
      • Calculating heights of objects (e.g., using shadows).
      • Creating scale drawings.
      • Designing models or blueprints.
      • Solving geometric problems.

    Key Concepts Summary

    • Similarity involves figures with identical shapes but not necessarily equal sizes.
    • Corresponding angles are equal, and corresponding sides are proportional.
    • The scale factor relates the size of corresponding sides.
    • Similarity is a fundamental concept in geometry with practical applications.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Explore the properties of similar figures in geometry, including their definitions, characteristics of proportional sides, and the concept of scale factors. This quiz covers similar polygons and triangles, providing a solid foundation for understanding geometric relationships and similarities.

    More Like This

    Similar Figures Illustration Quiz
    12 questions
    Similar Figures in Geometry
    10 questions
    Similar Figures in Geometry
    8 questions
    Use Quizgecko on...
    Browser
    Browser