Podcast
Questions and Answers
What does the Reflexive Property of Congruence state?
What does the Reflexive Property of Congruence state?
AB is congruent to AB
What does the Symmetric Property of Congruence state?
What does the Symmetric Property of Congruence state?
If AB is congruent to CD, then CD is congruent to AB
What does the Transitive Property of Congruence state?
What does the Transitive Property of Congruence state?
If AB ≅ CD and CD ≅ EF, then AB ≅ EF
What is the definition of congruence?
What is the definition of congruence?
Signup and view all the answers
What is the definition of a midpoint?
What is the definition of a midpoint?
Signup and view all the answers
What does the Segment Addition Postulate state?
What does the Segment Addition Postulate state?
Signup and view all the answers
What is the definition of a bisector?
What is the definition of a bisector?
Signup and view all the answers
Study Notes
Properties of Congruence
- Reflexive Property: Any segment is congruent to itself, symbolized as AB ≅ AB.
- Symmetric Property: If one segment is congruent to another, the converse is also true; for example, if AB ≅ CD, then CD ≅ AB.
- Transitive Property: If two segments are congruent to a third segment, they are congruent to each other; if AB ≅ CD and CD ≅ EF, then AB ≅ EF.
Definitions Related to Congruence
- Definition of Congruence: Two segments or angles are congruent if they have equal measures, signifying equality in length or angle size.
- Definition of Midpoint: A specific point on a segment that divides it into two equal-length, congruent segments.
- Definition of Bisector: A line or segment that intersects another segment or angle, splitting it into two equal halves.
Key Theorem
- Segment Addition Postulate: If point B lies on segment AC, then the lengths of the segments can be expressed as AB + BC = AC, establishing how lengths combine within a segment.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Test your understanding of the properties of congruence with these flashcards. Each card provides a definition of important concepts like the reflexive, symmetric, and transitive properties. Enhance your knowledge of geometry and prepare for segment proofs effectively.