Podcast
Questions and Answers
What is the definition of supplementary angles?
What is the definition of supplementary angles?
- Congruent angles
- Angles opposite each other
- Add to 180 (correct)
- Add to 90
Which property states that if a = b then b = a?
Which property states that if a = b then b = a?
- Symmetric (correct)
- Reflexive
- Associative
- Transitive
What are vertical angles?
What are vertical angles?
Angles opposite each other when two lines cross.
What is the definition of a trapezoid?
What is the definition of a trapezoid?
Alternate interior angles are congruent if two lines are parallel.
Alternate interior angles are congruent if two lines are parallel.
To prove a quadrilateral is a rectangle, what condition should be satisfied?
To prove a quadrilateral is a rectangle, what condition should be satisfied?
Perpendicular lines form a ______ angle.
Perpendicular lines form a ______ angle.
In a kite, the diagonals are not perpendicular.
In a kite, the diagonals are not perpendicular.
Which theorem can be used to prove congruent triangles using the condition SAS?
Which theorem can be used to prove congruent triangles using the condition SAS?
What proves that two lines are parallel?
What proves that two lines are parallel?
Match the following quadrilaterals with their properties:
Match the following quadrilaterals with their properties:
To prove a quadrilateral is a rhombus, at least one of the following conditions must be true: All four sides are ______.
To prove a quadrilateral is a rhombus, at least one of the following conditions must be true: All four sides are ______.
What is the condition required to prove that a quadrilateral is an isosceles trapezoid?
What is the condition required to prove that a quadrilateral is an isosceles trapezoid?
If two lines are cut by a transversal and the alternate exterior angles are congruent, then the lines are parallel.
If two lines are cut by a transversal and the alternate exterior angles are congruent, then the lines are parallel.
What does CPCTC stand for?
What does CPCTC stand for?
Flashcards
Supplementary Angles
Supplementary Angles
Two angles whose measures add up to 180 degrees.
Complementary Angles
Complementary Angles
Two angles whose measures add up to 90 degrees.
Vertical Angles
Vertical Angles
Opposite angles formed by intersecting lines; they are congruent.
Adjacent Angles
Adjacent Angles
Angles that share a common vertex and side.
Signup and view all the flashcards
Reflexive Property
Reflexive Property
A quantity is equal to itself.
Signup and view all the flashcards
Symmetric Property
Symmetric Property
If a = b, then b = a.
Signup and view all the flashcards
Transitive Property
Transitive Property
If a = b and b = c, then a = c.
Signup and view all the flashcards
Substitution
Substitution
Replacing equal values in an equation.
Signup and view all the flashcards
Corresponding Angles
Corresponding Angles
Angles in the same position on parallel lines cut by a transversal.
Signup and view all the flashcards
Alternate Interior Angles
Alternate Interior Angles
Angles within the parallel lines, on opposite sides of the transversal.
Signup and view all the flashcards
Alternate Exterior Angles
Alternate Exterior Angles
Angles outside the parallel lines, on opposite sides of the transversal.
Signup and view all the flashcards
Consecutive Interior Angles
Consecutive Interior Angles
Angles within the parallel lines, on the same side of the transversal.
Signup and view all the flashcards
Parallel Lines
Parallel Lines
Lines that never intersect.
Signup and view all the flashcards
Perpendicular Lines
Perpendicular Lines
Lines that intersect at a right angle.
Signup and view all the flashcards
SAS Congruence
SAS Congruence
Two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle.
Signup and view all the flashcards
SSS Congruence
SSS Congruence
Three sides of one triangle are congruent to three sides of another triangle.
Signup and view all the flashcards
ASA Congruence
ASA Congruence
Two angles and the included side of one triangle are congruent to two angles and the included side of another triangle.
Signup and view all the flashcards
AAS Congruence
AAS Congruence
Two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of another triangle.
Signup and view all the flashcards
CPCTC
CPCTC
Corresponding parts of congruent triangles are congruent.
Signup and view all the flashcards
Trapezoid
Trapezoid
A quadrilateral with exactly one pair of parallel sides.
Signup and view all the flashcards
Isosceles Trapezoid
Isosceles Trapezoid
A trapezoid with congruent legs and base angles.
Signup and view all the flashcards
Kite
Kite
A quadrilateral with two pairs of consecutive congruent sides and no opposite sides parallel.
Signup and view all the flashcardsStudy Notes
Angles
- Supplementary angles sum to 180 degrees.
- Complementary angles sum to 90 degrees.
- Vertical angles are opposite angles formed when two lines intersect and are congruent.
- Adjacent angles share a common vertex and side.
Basic Properties for Proofs
- Reflexive Property: a is equal to a.
- Symmetric Property: if a equals b, then b equals a.
- Transitive Property: if a equals b and b equals c, then a equals c.
- Substitution allows for replacing equal values in equations.
- Addition and subtraction properties maintain equality during operations.
- Multiplication and division can be applied to both sides of an equation as long as the divisor is not zero.
- Commutative Property indicates that order does not affect addition or multiplication.
- Associative Property highlights grouping does not affect addition or multiplication.
- Distributive Property connects multiplication with addition.
Parallel Lines and Transversals
- Corresponding angles formed are congruent when parallel lines are cut by a transversal.
- Alternate interior angles are congruent.
- Alternate exterior angles are congruent.
- Consecutive interior angles sum to 180 degrees (supplementary).
Proving Lines are Parallel
- Congruent corresponding angles imply lines are parallel.
- Congruent alternate interior angles signify parallel lines.
- Congruent alternate exterior angles indicate lines are parallel.
- Supplementary consecutive interior angles confirm parallelism.
- Lines sharing the same slope are parallel.
Proving a Right Angle
- Perpendicular lines intersect at right angles. Can be demonstrated using the slope formula or given values.
Proving Congruent Triangles
- Congruence can be established via:
- Side-Angle-Side (SAS)
- Side-Side-Side (SSS)
- Angle-Side-Angle (ASA)
- Angle-Angle-Side (AAS)
- CPCTC: Corresponding Parts of Congruent Triangles are Congruent.
Quadrilaterals
-
Trapezoid:
- One pair of parallel sides (bases).
- Angles on the same side of bases are supplementary.
-
Isosceles Trapezoid:
- One pair of parallel sides.
- Congruent legs and congruent base angles.
- Diagonals are congruent.
-
Kite:
- Two pairs of consecutive congruent sides.
- One pair of congruent opposite angles.
- Diagonals are perpendicular.
-
Parallelogram:
- Opposite sides are congruent.
- Opposite angles are congruent.
- Consecutive angles are supplementary.
- If one angle is right, all angles are right.
- Diagonals bisect each other.
- Each diagonal divides the parallelogram into two congruent triangles.
-
Rectangle:
- A parallelogram with all angles congruent.
- Diagonals are congruent.
-
Rhombus:
- A parallelogram with all sides congruent.
- Diagonals are perpendicular and bisect opposite angles.
-
Square:
- A figure that is both a rhombus and a rectangle.
- All sides and angles are congruent.
Proving a Quadrilateral is a Parallelogram
- Achieve by demonstrating:
- Both pairs of opposite sides are parallel.
- Both pairs of opposite sides are congruent.
- Both pairs of opposite angles are congruent.
- An interior angle is supplementary to consecutive angles.
- Diagonals bisect each other.
- One pair of opposite sides is both parallel and congruent.
Proving a Quadrilateral is a Rectangle
- Confirm by showing:
- All four angles are congruent.
- It is a parallelogram and its diagonals are congruent.
Proving a Quadrilateral is a Rhombus
- Validate by proving:
- All sides are congruent.
- It is a parallelogram with perpendicular diagonals.
- Each diagonal bisects a pair of opposite angles.
Proving a Quadrilateral is a Square
- Demonstrate it is both a rhombus and a rectangle.
Proving a Quadrilateral is a Kite
- Establish if it has:
- Two pairs of congruent sides.
- Opposite sides are not congruent.
- Diagonals are perpendicular.
- One pair of congruent opposite angles.
Proving a Quadrilateral is an Isosceles Trapezoid
- Show:
- It is a trapezoid with a pair of congruent legs.
- It has congruent base angles.
- Its diagonals are congruent.
Proving Similar Triangles
- Establish similarity through:
- Angle-Angle (AA) congruence.
- Sides in proportion (SSS).
- Two sides in proportion with an included angle (SAS).
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.