Geometry Exercise 7.1
8 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the distance between the points (2, 3) and (4, 1)?

  • $4$
  • $5$ (correct)
  • $3$
  • $2$
  • The coordinates (-5, 7), (-1, 3) are collinear.

    False

    The distance between the points (0, 0) and (36, 15) is ___.

    39

    What type of triangle are the points (5, -2), (6, 4), and (7, -2) the vertices of?

    <p>isosceles</p> Signup and view all the answers

    Which of the following points are equidistant from (2, -5) and (-2, 9)?

    <p>(0, 2)</p> Signup and view all the answers

    Match the geometrical figures with the correct property:

    <p>Square = All sides equal and angles 90 degrees Rectangle = Opposite sides equal and angles 90 degrees Rhombus = All sides equal but angles not 90 degrees Parallelogram = Opposite sides equal but angles not 90 degrees</p> Signup and view all the answers

    What is the equation used to find the distance between two points?

    <p>Distance Formula: $D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$</p> Signup and view all the answers

    The points (-1, -2), (1, 0), (-1, 2), (-3, 0) form a rectangle.

    <p>True</p> Signup and view all the answers

    Study Notes

    Distance Calculations

    • Distance between points (2, 3) and (4, 1) can be calculated using the distance formula: (d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}).
    • For points (-5, 7) and (-1, 3), apply the same distance formula to find the result.
    • For general points (a, b) and (-a, -b), the formula leads to a consistent relation regardless of specific values.

    Specific Distance Example

    • The distance between (0, 0) and (36, 15) can be determined using the distance formula, yielding a specific numerical result.
    • This distance can then be compared to the distance between two towns A and B, analyzing if known values apply.

    Collinearity Analysis

    • Determining if points (1, 5), (2, 3), and (-2, -11) are collinear requires checking if the slopes between any two pairs of points are equal.

    Triangle Type Check

    • To verify if points (5, -2), (6, 4), and (7, -2) form an isosceles triangle, calculate the distances between each pair and assess if at least two distances are equal.

    Quadrilateral Shape Confirmation

    • Assess points A, B, C, and D for whether they form a square by checking the distances between adjacent points and the diagonals.
    • Evaluation of points (-1, -2), (1, 0), (-1, 2), and (-3, 0) to determine if they form a specific quadrilateral, justifying the claims with distance measures.
    • Repeat for points (-3, 5), (3, 1), (0, 3), (-1, -4) and (4, 5), (7, 6), (4, 3), (1, 2) to classify the shape.

    Equidistant Point on x-axis

    • Finding a point on the x-axis that maintains equal distance from (2, -5) and (-2, 9) involves setting up the equation using the distance formula, leading to a solution for the x-coordinate.

    Distance Constraints

    • Establishing values of y that maintain a fixed distance of 10 units between points P(2, -3) and Q(10, y) requires solving the related distance equation for y.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Test your understanding of distance, collinearity, and triangle properties in this Geometry Exercise 7.1 quiz. You'll solve problems involving distances between points, checking for collinearity, and determining the type of triangle formed by given vertices.

    More Like This

    Use Quizgecko on...
    Browser
    Browser