Geometricae Series et Limites

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

Quid significat convergere seriem geometricam?

  • Singulos terminos seriem coniungi in puncto stabilis.
  • Seriem convergere cum ratio minus uno sit. (correct)
  • Summam seriem augmentari sine fine.
  • Seriem convergere cum terms constanter augent.

Quae res ad limitem serierum non coniungitur?

  • Differentius inter summas terminos.
  • Numerus summorum limitis tendens ad finem.
  • Aestimationes supra et infra limitis.
  • Limit exsistentiae non terminati rerum. (correct)

Quae est forma seriem geometricam:

  • Termini seriem crescentes exponuntur.
  • Summa terminos series sit aequalis ratio.
  • Summa terminos erit experientia quantitatum.
  • Terminum primum voluminis per ratio constantis multiplicatur. (correct)

Quomodo determinari possunt series Taylor?

<p>Summa terminorum derivativorum pro certo puncto. (D)</p> Signup and view all the answers

Quod affirmativum de diversitate serierum verum est?

<p>Seriæ convertentes summas indefinitae non assequuntur. (B)</p> Signup and view all the answers

What characterizes the convergence of a geometric series with a common ratio $r$?

<p>The series converges if $r$ is less than 1. (D)</p> Signup and view all the answers

Which of the following statements about a sequence is true?

<p>A sequence can be bounded and still divergent. (B), All convergent sequences are also bounded. (D)</p> Signup and view all the answers

Which condition is sufficient for the convergence of a series?

<p>The individual terms of the series approach zero. (C)</p> Signup and view all the answers

Which of the following is true about the partial sum of a geometric series?

<p>It can be expressed as $S_n = rac{a(1 - r^n)}{1 - r}$. (A)</p> Signup and view all the answers

What distinguishes Taylor's series from Maclaurin's series?

<p>Maclaurin's series is a special case of Taylor's series centered at 0. (A)</p> Signup and view all the answers

Flashcards are hidden until you start studying

Study Notes

Series Geometricae

  • Series geometricae convergunt cum ratio communis minor est quam 1 in magnitudine. Hoc significat series ad limitem converget.
  • Ratio communis, r, est proventus divisionis cuiusque termini per terminum antecedentem.
  • Si ratio communis, r, maior est quam 1 in magnitudine, series diverget.

Series Taylor

  • Series Taylor adhiberi potest ad approximationem functionis cum serie infinita terminorum.
  • Series Taylor construitur ex derivatis functionis in puncto specifico.
  • Formula generalis serierum Taylor est:
  • f(x) = f(a) + f'(a)(x-a)/1! + f''(a)(x-a)²/2! + f'''(a)(x-a)³/3! + ...*

Differentiae Serierum

  • Series convergens ad limitem finitum converget cum numerus terminorum augetur.

  • Series divergens ad limitem infinitum convergere non potest.

  • Convergentia et divergentia serierum dependet ex formula seriei et valore x.

  • Series geometricae ad limitem finitum convergunt cum ratio communis, r, minor est quam 1 in magnitudine.

  • r < 1: convergens

  • r > 1: divergens

  • Series harmonica (1 + 1/2 + 1/3 + 1/4 + ...) exemplar series divergentis est.

Series Geometrica

  • Series geometrica convergit si et tantum si modulus rationis communis minor quam 1 est.
  • Modulus rationis communis maior quam 1 implicat divergentiam seriei geometricae.
  • Series geometrica definitur per expressionem:
    • $a + ar + ar^2 + ar^3 + ...$
    • ubi a est terminus primus, et r est ratio communis.

Series

  • Series convergit si et tantum si summa partialis seriei convergit ad limitem definitum cum n tendit ad infinitum.
  • Series divergit si summa partialis seriei non convergit ad limitem definitum cum n tendit ad infinitum.

Series Taylor

  • Series Taylor est repraesentatio seriei infinitae pro functione differentiabili.
  • Series Taylor est unicum seriei expansionis pro functione data in puncto dato.
  • Series Taylor cum centro x = 0 nominatur series Maclaurin.

Divergentia Seriei

  • Series divergit si summa partialis seriei non convergit ad limitem definitum cum n tendit ad infinitum.
  • Divergentia seriei potest significare quod series tendit ad infinitum aut quod summa partialis seriei non convergit ad limitem definitum.

Series Maclaurin

  • Series Maclaurin est casus specialis seriei Taylor ubi x = 0 est.
  • Series Maclaurin potest esse utilis ad approximandam functionem pro valoribus x proximis 0.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Use Quizgecko on...
Browser
Browser