Geometria Analítica: Coordenadas Cartesianas e Formulas de Distância, Linhas, Pontos Médios e Seções Cônicas

UnabashedTranscendental avatar
UnabashedTranscendental
·
·
Download

Start Quiz

Study Flashcards

12 Questions

Qual é o nome do sistema de coordenadas utilizado em geometria analítica para representar pontos em um plano bidimensional?

Coordenadas cartesianas

Qual é a fórmula utilizada para calcular a distância entre dois pontos no plano cartesiano?

d = sqrt((x2 - x1)² + (y2 - y1)²)

Quem é creditado com a fundação da geometria analítica no século 17?

René Descartes

O que é possível fazer em geometria analítica?

Reformular problemas geométricos como equivalentes problemas algébricos

Quais são as coordenadas que representam a distância horizontal e vertical em um plano cartesiano?

x e y

Que ramo da matemática usa simbolismo algébrico e métodos para resolver problemas geométricos?

Geometria analítica

Qual é a fórmula do ponto médio de um segmento de reta com extremidades em (x1, y1) e (x2, y2)?

(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2)

O que representa 'm' na equação de uma reta na forma y = mx + b?

A inclinação da reta

Como é expressa a equação de uma hipérbole com centro em (a, b), eixos horizontal 2a e vertical 2b?

(x - a)² / a² - (y - b)² / b² = 1

Quais são os tipos de seções cônicas mencionadas no texto?

Círculo, elipse e hipérbole

Em que parte da equação de uma elipse você encontrará as coordenadas do centro?

(a, b)

Qual é o significado de 'b' na equação de uma elipse com centro em (a, b) e semi-eixos maior e menor de 'a' e 'b'?

Semi-eixo menor

Study Notes

Analytic Geometry: Cartesian Coordinates, Distance Formula, Equations of Lines, Midpoint Formula, and Conic Sections

Analytic geometry, also known as coordinate geometry, is a branch of mathematics that uses algebraic symbolism and methods to solve geometric problems. It was founded by French mathematician René Descartes in the 17th century, who adapted the algebra of his contemporary Viète to study geometric curves by using letters to represent variable distances. This approach establishes a correspondence between geometric curves and algebraic equations, making it possible to reformulate geometric problems as equivalent algebraic problems.

Cartesian Coordinates

In analytic geometry, points in a two-dimensional plane are represented using Cartesian coordinates, a system of coordinates that uses two perpendicular lines, called axes, intersecting at a right angle. The x-axis represents horizontal distances, while the y-axis represents vertical distances. Any point in the plane can be uniquely represented by a pair of numbers (x, y), where x is the horizontal coordinate and y is the vertical coordinate.

Distance Formula

The distance between two points (x1, y1) and (x2, y2) in a Cartesian plane is given by the distance formula, which is derived from the Pythagorean theorem:

d = sqrt((x2 - x1)² + (y2 - y1)²)

This formula calculates the straight-line distance between the two points, assuming the x and y coordinates are measured in the same units.

Equations of Lines

The equation of a line in a Cartesian plane is given by the slope-intercept form:

y = mx + b

where m is the slope of the line (the change in y divided by the change in x) and b is the y-intercept (the value of y when x = 0. This form of the equation represents the equation of a line in terms of its slope and y-intercept.

Midpoint Formula

The midpoint of a line segment connecting points (x1, y1) and (x2, y2) is given by the midpoint formula:

(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2)

This formula calculates the coordinates of the midpoint of the line segment, which is the point halfway between the two endpoints.

Conic Sections

Conic sections are curves formed by the intersection of a plane and a cone. There are three types of conic sections: circle, ellipse, and hyperbola. The equations of these curves can be expressed in terms of Cartesian coordinates. For example, the equation of a circle with center (a, b) and radius r is:

(x - a)² + (y - b)² = r²

The equation of an ellipse with center (a, b), semi-major axis a, and semi-minor axis b is:

(x - a)² / a² + (y - b)² / b² = 1

And the equation of a hyperbola with center (a, b), horizontal axis 2a, and vertical axis 2b is:

(x - a)² / a² - (y - b)² / b² = 1

Aprenda sobre geometria analítica com foco em coordenadas cartesianas, fórmulas de distância, equações de linhas, fórmula de ponto médio e seções cônicas. Descubra como pontos, linhas e curvas podem ser representados e calculados de forma algébrica nesse ramo da matemática.

Make Your Own Quizzes and Flashcards

Convert your notes into interactive study material.

Get started for free

More Quizzes Like This

Analytic Geometry Quiz
5 questions

Analytic Geometry Quiz

JoyousHippopotamus avatar
JoyousHippopotamus
Analytic Geometry Fundamentals Quiz
5 questions
Analytic Geometry Fundamentals Quiz
10 questions
Use Quizgecko on...
Browser
Browser