Podcast
Questions and Answers
What is the numerator in a fraction?
What is the numerator in a fraction?
What is the main rule to simplify a fraction?
What is the main rule to simplify a fraction?
What is the result of multiplying two fractions?
What is the result of multiplying two fractions?
What does it mean for a fraction to be simplified?
What does it mean for a fraction to be simplified?
Signup and view all the answers
What is the purpose of simplifying fractions?
What is the purpose of simplifying fractions?
Signup and view all the answers
What is the correct method to multiply fractions?
What is the correct method to multiply fractions?
Signup and view all the answers
What is the requirement for adding or subtracting fractions?
What is the requirement for adding or subtracting fractions?
Signup and view all the answers
What is the result of multiplying $2/3$ and $5/7$?
What is the result of multiplying $2/3$ and $5/7$?
Signup and view all the answers
What is the result of adding $3/5$ and $2/5$?
What is the result of adding $3/5$ and $2/5$?
Signup and view all the answers
What is the result of subtracting $3/7$ from $5/7$?
What is the result of subtracting $3/7$ from $5/7$?
Signup and view all the answers
Study Notes
Fraction Basics
- A fraction consists of two numbers: a numerator (the top number) and a denominator (the bottom number).
- Numerator represents the number of parts, while denominator represents the number of parts that make a whole.
Simplifying Fractions
- A fraction is simplified if the numerator and denominator have no factors in common other than 1.
- To simplify a fraction, divide both the numerator and denominator by the largest number that will divide evenly into both.
Examples of Simplified Fractions
- 16/60 = 1/6
- 75/120 = 5/8
- 7/18 = 7/18
- 10xy/15y = 2x/3y
- 5/15 = 1/3
- 13/26 = 1/2
Multiplying Fractions
- Multiply straight across, numerator times numerator and denominator times denominator.
- Simplify, if possible.
Examples of Multiplying Fractions
- 3/1 × 4/5 = 12/5
- 11/3y × 3/5y = 33y/15y
- 2/5 × 5/5 = 2/5
- 9a/2 × 10/5 = 9a/1
Dividing Fractions
- Multiply the first fraction by the reciprocal (flip) of the second fraction.
Examples of Dividing Fractions
- 2/5 ÷ 3/1 = 2/5 × 1/3 = 2/15
- 3y/5y ÷ 6y/3y = 3y/5y × 3y/6y = 1/2
- 7/x ÷ 2/5 = 7/x × 5/2 = 35/2x
Adding or Subtracting Fractions
- DENOMINATORS must be the SAME to add or subtract fractions.
- Get a common denominator, if needed, then add or subtract the numerators and keep the common denominator.
- Simplify, if possible.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
Learn about fractions, including numerator, denominator, and simplification.