Fleming's Right-Hand Rule and Electromagnetic Forces

EarnestBaltimore avatar
EarnestBaltimore
·
·
Download

Start Quiz

Study Flashcards

Questions and Answers

अगर विद्युत धारा वाली तार एक स्थित चुंबकीय क्षेत्र में होती है, तो मेंग्नेटिक फोर्स का दिशा केवल उँगली के दिशा के विपरीत होगा।

False

जेम्स क्लर्क मैक्सवेल के मशहूर दाहिने हाथ के नियम में, अनाजाने धारा की दिशा को प्रस्तुत करने के लिए अंगूठे, उंगली और मध्यम उंगली को प्रयोग किया जाता है।

False

मेगनेटिक फ़ील्ड के प्रति समकोनी प्रसारित उंगली, एक प्रस्थित मुख्य समकालिक फ़ोर्स के दिशा को प्रस्थुत करेगी।

False

जेम्स क्लर्क मैक्सवेल का महत्वपूर्ण दाहिना हाथ का नियम, मुख्य फ़ोर्स के दिशा प्रस्तुत करने में सहायक है।

<p>False</p> Signup and view all the answers

मुख्य फ़ोर्स सिरहने से समानांतरित होने पर, मानेटिक फ़ील्ड में समकोनी।

<p>False</p> Signup and view all the answers

एक विद्युत मोटर और जनरेटर की आपरेशन में, एक बाहरी स्रोत चुंबकीय परिवेश को प्रभावित करता है जो संबंधित धाराओं को और संबंधित बलों को सम्मिलित करने की अनुमति देता है।

<p>False</p> Signup and view all the answers

एक सीधी, क्षैतिज तार सेगमेंट AB निकट एक समान ऊर्ध्ववाहक चुंबकीय क्षेत्र B का होता है।

<p>False</p> Signup and view all the answers

सामान्य परिभाषा के मुताबिक, अगर तार में एक विद्युतीय प्रवाह I घड़ी की दिशा में है, तो हर सकारात्मक चार्ज के लिए उपेक्षीय प्रभुत्व का सामना करना होगा।

<p>False</p> Signup and view all the answers

हमेशा दाईं हाथ के नियम के मुताबिक, मुख्य फ़र्जीवाले पुल के संपर्क में होते हुए, प्रत्येक सक्रिय चार्ज के लिए एक फ़लनसीमा प्रोत्साहक प्रभुत्व होता है।

<p>False</p> Signup and view all the answers

इससे पहले, प्रसार फ़लनसीमा सहित, महंगे समान फ़र्ज का संपर्क होने पर, समस्त फ़र्ज फ़लनसीमा के समीप प्रोत्साहक प्रभुत्व का संप्रेरण होता है।

<p>False</p> Signup and view all the answers

Study Notes

Fleming's Right-Hand Rule and Electromagnetic Forces

The Fleming rule is a fundamental concept in classical physics dealing with electric motors and generators, centered around understanding how forces act upon current-carrying conductors placed within magnetic fields. Essential to this discussion are the right-hand rule, which helps visualize relationships between direction of current flow, applied magnetic fields, and resulting forces; electromagnetism, where these phenomena originate from; and magnetic fields, which serve as the medium through which forces arise.

The Right-Hand Rule

To demonstrate the relationship between current flowing along a wire, its orientation relative to a magnetic field, and the ensuing force experienced by the wire, we utilize James Clerk Maxwell's famous right-hand rule. To apply it:

  1. Extend your thumb, index finger, and middle finger into a fist while keeping them parallel, representing a right hand.
  2. Curve your fingers to point towards the direction of conventional electron flow (current) in the wire.
  3. Position your thumb to align perpendicularly against the lines of magnetic flux (the magnetic field lines).

Your thumb's orientation now indicates the direction of the magnetic force acting upon the charged particles moving through the wire—specifically, the force acts opposite to the thumb's movement when viewed relative to the wire's direction. This method allows us to intuitively connect current, magnetic field orientations, and associated forces.

Electric Motors and Generators

In both electric motor and generator operations, an external source alters the magnetic environment affecting coils carrying electrical currents. The action of a rotating magnet passing close to or inside stationary conductive loops creates torque due to the interaction described earlier via Fleming's right-hand rule. In essence, electricity converts mechanical energy into rotational motion. On the other end, a revolving armature wound with conducting wires generates voltage and thereby electric current because of changes in the magnetic field produced by the rotation.

Magnetic Fields and Force on a Current-Carrying Conductor

A magnetic field exerts a force on any charge carrier moving through it, such as electrons in a current-carrying conductor. For instance, consider a straight, horizontal wire segment (AB), lying near a uniform vertical magnetic field (\vec{B}). If the wire carries an electrical current (I) clockwise according to our usual definition, the force experienced by each positive charge will be directed upwards, generating a net repulsive effect on all charges in the wire. Hence, the entire wire experiences a force(F)acting vertically upward, perpendicular to both the current direction and the magnetic field line directions (Fig. 1):

[ \vec{F} = I L \vec{v}_d \times \vec{B}, ]

where (L) represents the length of the wire segment experiencing the force, and (\vec{v}_d) describes the drift velocity of electrons.

This simple demonstration provides foundational knowledge for more complex environments in modern technology applications and illustrates why electromagnets have become vital tools across numerous industries including transportation, manufacturing, and medicine.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Quizzes Like This

Use Quizgecko on...
Browser
Browser