Factorising Quadratic Equations
9 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the general form of a quadratic equation?

ax^2 + bx + c = 0

What are the steps to factorise a quadratic equation?

Identify coefficients, multiply a and c, find two numbers, rewrite the middle term, factor by grouping.

What are the two numbers that multiply to give ac and add up to b?

The two numbers are determined based on the values of a, b, and c from the quadratic equation.

If the quadratic equation is 2x^2 + 5x + 3 = 0, what are the values of a, b, and c?

<p>a = 2, b = 5, c = 3</p> Signup and view all the answers

What is the product ac for the equation 2x^2 + 5x + 3 = 0?

<p>6</p> Signup and view all the answers

What is the final factorisation of the equation 2x^2 + 5x + 3 = 0?

<p>(2x + 3)(x + 1) = 0</p> Signup and view all the answers

How do you find the roots of a factorised quadratic equation?

<p>Set each factor to zero and solve for x.</p> Signup and view all the answers

What are the solutions for x in the equation (2x + 3)(x + 1) = 0?

<p>x = -3/2, -1</p> Signup and view all the answers

The factor pairs used for factorisation must be correct for accurate solutions.

<p>True</p> Signup and view all the answers

Study Notes

Factorising Quadratic Equations

  • Quadratic equations are expressed in the standard form ( ax^2 + bx + c = 0 ).
  • Factorisation converts a quadratic into the product of two binomials.

Steps to Factorise Quadratic Equations

  • Identify coefficients: Recognize ( a ), ( b ), and ( c ) from the equation.
  • Multiply ( a ) and ( c ) to find ( ac ).
  • Find two numbers that:
    • Multiply to ( ac )
    • Sum to ( b )
  • Rewrite the middle term ( bx ) using the two identified numbers.
  • Group terms for factoring by common factors, resulting in two binomials.

Example

  • For ( 2x^2 + 5x + 3 = 0 ):
    • Coefficients: ( a = 2 ), ( b = 5 ), ( c = 3 )
    • Product: ( ac = 6 ) (where ( 2 \cdot 3 = 6 ))
    • Key numbers: ( 2 ) and ( 3 ) (since ( 2 \times 3 = 6 ) and ( 2 + 3 = 5 ))
    • Rewrite as ( 2x^2 + 2x + 3x + 3 )
    • Group: ( (2x^2 + 2x) + (3x + 3) )
    • Factor out: ( 2x(x + 1) + 3(x + 1) )
    • Final factorisation yields ( (2x + 3)(x + 1) = 0 )

Solving Quadratic Equations

  • After factorisation into ( (px + q)(rx + s) = 0 ):
    • Set each factor to zero: ( px + q = 0 ) and ( rx + s = 0 )
    • Solve for ( x ) using:
      • ( x = -\frac{q}{p} ) for ( px + q = 0 )
      • ( x = -\frac{s}{r} ) for ( rx + s = 0 )

Example of Solving

  • From ( (2x + 3)(x + 1) = 0 ):
    • For ( 2x + 3 = 0 ): ( x = -\frac{3}{2} )
    • For ( x + 1 = 0 ): ( x = -1 )
  • Solutions to the equation are ( x = -\frac{3}{2} ) and ( x = -1 ).

Key Points

  • Start by identifying the coefficients ( a ), ( b ), and ( c ).
  • Ensuring accurate factor pairs is crucial for correct factorisation.
  • Solutions obtained yield the roots of the quadratic equation, revealing where the quadratic intersects the x-axis.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

This quiz covers the process of factorising quadratic equations of the form ax² + bx + c = 0. Learn how to identify coefficients, multiply, and find the necessary numbers to express the quadratic as a product of binomials. Test your understanding with examples and practice problems.

More Like This

Algebra Class: Solving Quadratics by Factorisation
5 questions
Quadratic Equations Chapter
40 questions
Ecuaciones y Factorización Algebraica
5 questions
Use Quizgecko on...
Browser
Browser