Expression Simplification

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

Rationalize the denominator of $\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$.

$5 - 2\sqrt{6}$

Simplify: $\left(\frac{3}{4}\right)^{-2} + \left(\frac{4}{9}\right) \times \frac{16}{27}$

$\frac{253}{81}$

Simplify: $\sqrt[7]{\frac{x^{14} \cdot y^{21} \cdot z^{35}}{y^{14} \cdot z^{7}}}$

$\frac{x^2y}{z^4}$

Simplify: $\frac{5 \cdot (25)^{n+1} - 25 \cdot (5)^{2n}}{5 \cdot (5)^{2n+3} - (25)^{n+1}}$

<p>$\frac{-1}{25}$</p> Signup and view all the answers

Simplify the expression: $\frac{3^n \times 9^{n+1}}{3^{n-1} \times 9^{n-1}}$

<p>$81$</p> Signup and view all the answers

If $x = 3 + \sqrt{8}$, find the value of $\frac{1}{x}$.

<p>$3 - 2\sqrt{2}$</p> Signup and view all the answers

Determine the values of rational numbers $p$ and $q$ such that $\frac{8 - 3\sqrt{2}}{4 + 3\sqrt{2}} = p + q\sqrt{2}$.

<p>$p = \frac{50}{2}, q = -\frac{36}{7}$</p> Signup and view all the answers

Simplify the following expression: $\frac{54 \times \sqrt[3]{(27)^{2x}}}{9^{x+1} + 216(3^{2x-1})}$

<p>$\frac{2}{3}$</p> Signup and view all the answers

Flashcards

Rationalize the Denominator

To express a fraction with a rational denominator.

Rational Number

A number that can be expressed in the form p/q, where p and q are integers and q ≠ 0.

Simplifying Exponents

Simplifying expressions with exponents involves applying exponent rules to reduce them to their simplest form.

Irrational Number

Is a number that cannot be expressed as a ratio of two integers.

Signup and view all the flashcards

Solving Equations

Involves finding the values of unknown variables that satisfy the given equation.

Signup and view all the flashcards

Simplifying

Transforming an expression to a simpler, more understandable or usable form.

Signup and view all the flashcards

Study Notes

  • These notes cover mathematical expressions and simplifications.

Simplifying Expressions with Radicals

  • (iv) simplifies (6-4√2) / (6+4√2).
  • (v) simplifies (√3-√2) / (√3+√2).
  • (vi) simplifies 4√3 / (√7+√5).

Simplifying Expressions with Exponents

  • (i) simplifies (81/16)^(-3/4).
  • (ii) simplifies (3/4)^(-2) + (4/9) * (16/27).
  • (iii) simplifies (0.027)^(-1/3).
  • (iv) simplifies √(x^14 * y^21 * z^35) / (y^14 * z^7).
  • (v) simplifies [5 * (25)^(n+1) - 25 * (5)^(2n)] / [5 * (5)^(2n+3) - (25)^(n+1)].
  • (vi) simplifies (16^(x+1) + 20 * (4^(2x))) / (2^(x-3) * 8^(x+2)).
  • (vii) simplifies (64)^(2/3) ÷(9)^(-3/2).
  • (viii) simplifies (3^n * 9^(n+1)) / (3^(n-1) * 9^(n-1)).
  • (ix) simplifies (5^(n+3) - 6 * 5^(n+1)) / (9 * 5^n - 2^n * 5^n).

Finding Values Based on a Given Condition

  • Given x = 3 + √8, find the value of:
    • (i) x + 1/x
    • (ii) x - 1/x
    • (iii) x² + 1/x²
    • (iv) x² - 1/x²
    • (v) x⁴ + 1/x⁴
    • (vi) (x - 1/x)²

Rational Numbers

  • Find rational numbers p and q such that (8 - 3√2) / (4 + 3√2) = p + q√2.

Simplifying Expressions

  • (i) simplifies [(25)^3 * (243)^5] / [(16)^4 * (8)^3].
  • (ii) simplifies [54 * ∛(27)^(2x)] / [9^(x+1) + 216 * (3^(2x-1))].
  • (iii) simplifies √[(216)^(2/3) * (25)^(1/2)] / (0.04)^(-3/2).
  • (iv) simplifies (a^(1/3) + b^(2/3)) * (a^(2/3) - a^(1/3)b^(2/3) + b^(4/3)).

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

More Like This

Use Quizgecko on...
Browser
Browser