Podcast
Questions and Answers
Rationalize the denominator of $\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$.
Rationalize the denominator of $\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$.
$5 - 2\sqrt{6}$
Simplify: $\left(\frac{3}{4}\right)^{-2} + \left(\frac{4}{9}\right) \times \frac{16}{27}$
Simplify: $\left(\frac{3}{4}\right)^{-2} + \left(\frac{4}{9}\right) \times \frac{16}{27}$
$\frac{253}{81}$
Simplify: $\sqrt[7]{\frac{x^{14} \cdot y^{21} \cdot z^{35}}{y^{14} \cdot z^{7}}}$
Simplify: $\sqrt[7]{\frac{x^{14} \cdot y^{21} \cdot z^{35}}{y^{14} \cdot z^{7}}}$
$\frac{x^2y}{z^4}$
Simplify: $\frac{5 \cdot (25)^{n+1} - 25 \cdot (5)^{2n}}{5 \cdot (5)^{2n+3} - (25)^{n+1}}$
Simplify: $\frac{5 \cdot (25)^{n+1} - 25 \cdot (5)^{2n}}{5 \cdot (5)^{2n+3} - (25)^{n+1}}$
Simplify the expression: $\frac{3^n \times 9^{n+1}}{3^{n-1} \times 9^{n-1}}$
Simplify the expression: $\frac{3^n \times 9^{n+1}}{3^{n-1} \times 9^{n-1}}$
If $x = 3 + \sqrt{8}$, find the value of $\frac{1}{x}$.
If $x = 3 + \sqrt{8}$, find the value of $\frac{1}{x}$.
Determine the values of rational numbers $p$ and $q$ such that $\frac{8 - 3\sqrt{2}}{4 + 3\sqrt{2}} = p + q\sqrt{2}$.
Determine the values of rational numbers $p$ and $q$ such that $\frac{8 - 3\sqrt{2}}{4 + 3\sqrt{2}} = p + q\sqrt{2}$.
Simplify the following expression: $\frac{54 \times \sqrt[3]{(27)^{2x}}}{9^{x+1} + 216(3^{2x-1})}$
Simplify the following expression: $\frac{54 \times \sqrt[3]{(27)^{2x}}}{9^{x+1} + 216(3^{2x-1})}$
Flashcards
Rationalize the Denominator
Rationalize the Denominator
To express a fraction with a rational denominator.
Rational Number
Rational Number
A number that can be expressed in the form p/q, where p and q are integers and q ≠ 0.
Simplifying Exponents
Simplifying Exponents
Simplifying expressions with exponents involves applying exponent rules to reduce them to their simplest form.
Irrational Number
Irrational Number
Signup and view all the flashcards
Solving Equations
Solving Equations
Signup and view all the flashcards
Simplifying
Simplifying
Signup and view all the flashcards
Study Notes
- These notes cover mathematical expressions and simplifications.
Simplifying Expressions with Radicals
- (iv) simplifies (6-4√2) / (6+4√2).
- (v) simplifies (√3-√2) / (√3+√2).
- (vi) simplifies 4√3 / (√7+√5).
Simplifying Expressions with Exponents
- (i) simplifies (81/16)^(-3/4).
- (ii) simplifies (3/4)^(-2) + (4/9) * (16/27).
- (iii) simplifies (0.027)^(-1/3).
- (iv) simplifies √(x^14 * y^21 * z^35) / (y^14 * z^7).
- (v) simplifies [5 * (25)^(n+1) - 25 * (5)^(2n)] / [5 * (5)^(2n+3) - (25)^(n+1)].
- (vi) simplifies (16^(x+1) + 20 * (4^(2x))) / (2^(x-3) * 8^(x+2)).
- (vii) simplifies (64)^(2/3) ÷(9)^(-3/2).
- (viii) simplifies (3^n * 9^(n+1)) / (3^(n-1) * 9^(n-1)).
- (ix) simplifies (5^(n+3) - 6 * 5^(n+1)) / (9 * 5^n - 2^n * 5^n).
Finding Values Based on a Given Condition
- Given x = 3 + √8, find the value of:
- (i) x + 1/x
- (ii) x - 1/x
- (iii) x² + 1/x²
- (iv) x² - 1/x²
- (v) x⁴ + 1/x⁴
- (vi) (x - 1/x)²
Rational Numbers
- Find rational numbers p and q such that (8 - 3√2) / (4 + 3√2) = p + q√2.
Simplifying Expressions
- (i) simplifies [(25)^3 * (243)^5] / [(16)^4 * (8)^3].
- (ii) simplifies [54 * ∛(27)^(2x)] / [9^(x+1) + 216 * (3^(2x-1))].
- (iii) simplifies √[(216)^(2/3) * (25)^(1/2)] / (0.04)^(-3/2).
- (iv) simplifies (a^(1/3) + b^(2/3)) * (a^(2/3) - a^(1/3)b^(2/3) + b^(4/3)).
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.