Podcast
Questions and Answers
กระบวนการใดเป็นกระบวนการที่ใช้ในการสร้าง mRNA จาก DNA ในนิวเคลียส?
กระบวนการใดเป็นกระบวนการที่ใช้ในการสร้าง mRNA จาก DNA ในนิวเคลียส?
RNA polymerase มีหน้าที่ใดในกระบวนการ Transcription?
RNA polymerase มีหน้าที่ใดในกระบวนการ Transcription?
RNA ชนิดใดที่มีหน้าที่เป็นโมเลกุลช่วยในการแปลง mRNA เป็นกรดอะมิโน?
RNA ชนิดใดที่มีหน้าที่เป็นโมเลกุลช่วยในการแปลง mRNA เป็นกรดอะมิโน?
โมเลกุลชื่ออะไรที่ใช้พา genetic code จาก DNA ที่อยู่ในนิวเคลียสออกไปยังไซโตพลาซึมที่เกิดขึ้น protein biosynthesis?
โมเลกุลชื่ออะไรที่ใช้พา genetic code จาก DNA ที่อยู่ในนิวเคลียสออกไปยังไซโตพลาซึมที่เกิดขึ้น protein biosynthesis?
Signup and view all the answers
เมื่อ ribosomes ผลิตโปรตีนจาก mRNA, มันจะผสม amino acids ตามอะไร?
เมื่อ ribosomes ผลิตโปรตีนจาก mRNA, มันจะผสม amino acids ตามอะไร?
Signup and view all the answers
การฉีด siRNA หรือ miRNA สามารถทำให้เกิดการควบคุม gene expression อย่างไร?
การฉีด siRNA หรือ miRNA สามารถทำให้เกิดการควบคุม gene expression อย่างไร?
Signup and view all the answers
DNA ประกอบด้วยสารอะไรบ้าง?
DNA ประกอบด้วยสารอะไรบ้าง?
Signup and view all the answers
ชนิดของการเชื่อมโยงระหว่างไซโตซีน (C) และกวานีน (G) ในโครงสร้างของ DNA คือ?
ชนิดของการเชื่อมโยงระหว่างไซโตซีน (C) และกวานีน (G) ในโครงสร้างของ DNA คือ?
Signup and view all the answers
กระบวนการที่ใช้ในการทำสำเนา DNA เป็นการใช้อะไรในการทำแผ่นพิมพ์?
กระบวนการที่ใช้ในการทำสำเนา DNA เป็นการใช้อะไรในการทำแผ่นพิมพ์?
Signup and view all the answers
RNA ชนิดใดมีหน้าที่ในกระบวนการของการแปลง mRNA เป็นโปรตีน?
RNA ชนิดใดมีหน้าที่ในกระบวนการของการแปลง mRNA เป็นโปรตีน?
Signup and view all the answers
โรคหลากพันธุกรรมเกิดจากอะไร?
โรคหลากพันธุกรรมเกิดจากอะไร?
Signup and view all the answers
กระบวนการที่ใช้ในการทำสำเนา DNA เป็นขั้วของ DNA ยังไม่ถูกปิดท้ายคือ?
กระบวนการที่ใช้ในการทำสำเนา DNA เป็นขั้วของ DNA ยังไม่ถูกปิดท้ายคือ?
Signup and view all the answers
Study Notes
Unraveling Life's Blueprint: Genetics
At the heart of life's intricate workings lies genetics — the study of heredity and variation within living organisms. This field encompasses fundamental concepts like the structure and function of our genetic material, its production and expression through various cellular processes, and how mutations can lead to diseases and conditions we call genetic disorders. In this exploration, let's delve into some key aspects of genetics, starting with its building blocks: DNA.
DNA Structure
The central entity in genetics is deoxyribonucleic acid (DNA), which stores information carried from one generation to another. As a double helix, it consists of two strands joined by hydrogen bonds between paired nucleotides, namely cytosine (C) bonding with guanine (G) and adenine (A) bonding with thymine (T). Each nucleotide also carries a sugar molecule (deoxyribose) and a phosphate group. These elements align to form a backbone along which the famous rungs of the ladder are constructed.
DNA Replication
To pass genetic information down the generations, cells must duplicate their DNA prior to division. DNA replication unfolds like a dance choreographed by enzymes such as helicase, primase, polymerases, and topoisomerases. They unwind the double helix, synthesize new complementary strands using the original sequence as a template, seal the gaps left behind, and rewind the DNA when done. This process ensures each daughter cell inherits identical copies of its parent's genes.
Types of RNA
Ribonucleic Acid (RNA) plays a crucial role in gene expression. There are three main types of RNA: messenger (mRNA), transfer (tRNA), and ribosomal (rRNA). mRNAs carry genetic code from DNA located inside the nucleus out into the cytoplasm where protein biosynthesis takes place; tRNAs serve as adaptor molecules that help translate mRNA into amino acids during protein assembly on ribosomes made up of rRNAs. Other kinds of RNA include small interfering RNA (siRNA) and microRNA (miRNA), both of which regulate gene expression post-transcriptionally.
Transcription and Translation
Transcription is where mRNAs are manufactured from DNA templates in the nucleus. Enzyme RNA polymerase reads a segment of the DNA called a gene, one base pair at a time, and incorporates matching bases onto its growing mRNA transcript. Following transcription, ribosomes assemble proteins utilizing the mRNA transcript as a blueprint, while binding tRNAs carrying specific amino acids according to the triplet codons encoded therein. By stringing together these amino acids in the order dictated by the mRNA, ribosomes produce functional polypeptide chains that fold into the final shape of the resulting protein.
Genetic Disorders
Mutations are alterations in the DNA sequence that may result in genetic disorders. Spontaneous errors occurring randomly during cell divisions or inherited changes due to faulty DNA repair mechanisms make cells susceptible to producing offspring bearing these variants. Some genetic disorders involve single-gene mutations affecting specific functions; examples include sickle cell anemia caused by hemoglobinopathy, Huntington disease linked to abnormalities in the huntingtin protein, and phenylketonuria associated with impaired metabolism of phenylalanine. Mutations may also affect multiple genes across different chromosomes, leading to complex medical issues that require multifaceted approaches to diagnosis and treatment.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Discover the intricate workings of genetics, from the structure and replication of DNA to the types of RNA and the processes of transcription and translation. Learn how mutations in the genetic material can lead to various genetic disorders like sickle cell anemia and phenylketonuria.