Podcast
Questions and Answers
Što se događa s dva naelektrizirana tijela međusobno?
Što se događa s dva naelektrizirana tijela međusobno?
- Uvijek se odbijaju.
- Uvijek se privlače.
- Djeluju silom na daljinu. (correct)
- Ne djeluju međusobno.
Što predstavljaju silnice električnog polja?
Što predstavljaju silnice električnog polja?
- Područja bez električnog polja.
- Linije kojima pokazujemo jakost i smjer električnog polja. (correct)
- Izolatore u električnom polju.
- Stvarne putanje kojima se kreću naboji.
Iz čega izlaze silnice električnog polja?
Iz čega izlaze silnice električnog polja?
- Iz negativnih naboja.
- Iz neutralnih točaka.
- Iz električnog polja Zemlje.
- Iz pozitivnih naboja. (correct)
Što je karakteristično za električno polje unutar metalne kugle (šuplje ili pune)?
Što je karakteristično za električno polje unutar metalne kugle (šuplje ili pune)?
Što je karakteristično za smjer električnog polja Zemlje?
Što je karakteristično za smjer električnog polja Zemlje?
Ako na mirni probni naboj $q$ djeluje električna sila $\vec{F}$, kako se definira električno polje $\vec{E}$ u toj točki prostora?
Ako na mirni probni naboj $q$ djeluje električna sila $\vec{F}$, kako se definira električno polje $\vec{E}$ u toj točki prostora?
Koja je jedinica za električno polje?
Koja je jedinica za električno polje?
U kojem se smjeru gibaju listići elektroskopa (metalni ili plastični) kada se naelektriziraju?
U kojem se smjeru gibaju listići elektroskopa (metalni ili plastični) kada se naelektriziraju?
Kako se definira površinska gustoća naboja ($\sigma$)?
Kako se definira površinska gustoća naboja ($\sigma$)?
Što se događa s ukupnom količinom naboja u zatvorenom fizikalnom sustavu?
Što se događa s ukupnom količinom naboja u zatvorenom fizikalnom sustavu?
Koji od navedenih procesa može dovesti do elektriziranja tijela?
Koji od navedenih procesa može dovesti do elektriziranja tijela?
Što opisuje Kulonov zakon?
Što opisuje Kulonov zakon?
Što predstavlja električna permitivnost ($\epsilon$)?
Što predstavlja električna permitivnost ($\epsilon$)?
Kada se naboji nalaze u vakuumu/zraku, kako glasi izraz za Kulonovu silu?
Kada se naboji nalaze u vakuumu/zraku, kako glasi izraz za Kulonovu silu?
Što je karakteristično za homogeno električno polje?
Što je karakteristično za homogeno električno polje?
Što se događa s kazaljkom elektroskopa kada se negativno nabijen plastični štap približi elektroskopu (elektrostatska indukcija)?
Što se događa s kazaljkom elektroskopa kada se negativno nabijen plastični štap približi elektroskopu (elektrostatska indukcija)?
Što je električna polarizacija kod izolatora?
Što je električna polarizacija kod izolatora?
Kako se izračunava ukupan naboj (Q) nekog tijela?
Kako se izračunava ukupan naboj (Q) nekog tijela?
Koja je vrijednost elementarnog naboja (e)?
Koja je vrijednost elementarnog naboja (e)?
U kojem dijelu prostora električnog polja nema polja?
U kojem dijelu prostora električnog polja nema polja?
Flashcards
El. polje nabijene metalne kugle
El. polje nabijene metalne kugle
U prostoru unutar metalne kugle (šuplje ili pune) nema električnog polja. (E=0)
El. polje Zemlje
El. polje Zemlje
Površina Zemlje negativno je nabijena (E=200N/C), to polje je slabo, smjer polja prema središtu Zemlje.
Homogeno el. polje
Homogeno el. polje
Između 2 paralelne ploče s različitim nabojima, u svakoj točki polje ima isti smjer, istu orijentaciju i istu jakost.
Određivanje el. polja
Određivanje el. polja
Signup and view all the flashcards
Električno polje
Električno polje
Signup and view all the flashcards
Električne silnice
Električne silnice
Signup and view all the flashcards
Smjer el. polja
Smjer el. polja
Signup and view all the flashcards
Smjer el. polja
Smjer el. polja
Signup and view all the flashcards
Djelovanje el. naboja
Djelovanje el. naboja
Signup and view all the flashcards
Zakon očuvanja naboja
Zakon očuvanja naboja
Signup and view all the flashcards
Načini elektriziranja
Načini elektriziranja
Signup and view all the flashcards
Elektrostatska indukcija (kod metala)
Elektrostatska indukcija (kod metala)
Signup and view all the flashcards
Električna polarizacija (kod izolatora)
Električna polarizacija (kod izolatora)
Signup and view all the flashcards
Ukupni naboj
Ukupni naboj
Signup and view all the flashcards
Kulonova sila (Kulonov zakon)
Kulonova sila (Kulonov zakon)
Signup and view all the flashcards
Apsolutna permitivnost vakuuma/zraka
Apsolutna permitivnost vakuuma/zraka
Signup and view all the flashcards
Električna permitivnost sredstva
Električna permitivnost sredstva
Signup and view all the flashcards
Kvantiziranost el. naboja
Kvantiziranost el. naboja
Signup and view all the flashcards
Površinska gustoća naboja
Površinska gustoća naboja
Signup and view all the flashcards
El. neutralni atom/tijelo
El. neutralni atom/tijelo
Signup and view all the flashcards
Study Notes
Energy Bands
- When N silicon atoms form a crystal, electron valence interaction causes discrete energy levels to split into N distinct levels.
- These levels form continuous energy bands because they are closely spaced.
- The valence band is the lower band and is formed from 3s orbitals.
- The conduction band is the upper band and is formed from 3p orbitals.
- The space between the valence and conduction band is the energy gap $E_g$.
- Energy band diagrams plot energy (E) versus distance (x), showing the bottom edge of the conduction band ($E_c$) and the top edge of the valence band ($E_v$).
- The energy gap is $E_g = E_c - E_v$.
- Electrons will occupy the lowest available energy states.
- At absolute zero (0 K), electrons are in the valence band, making the conduction band empty.
- At higher temperatures, some electrons jump into the conduction band to create mobile electrons, also creating holes in the valence band.
- The number of electrons in the conduction band and holes in the valence band dictates the material conductivity.
- Insulators have a large $E_g$, such as diamond with $E_g = 5.5$ eV.
- Semiconductors have a small $E_g$, such as silicon with $E_g = 1.12$ eV.
- Conductors have overlapping bands, such as metals.
Direct and Indirect Band Gaps
- Band structure portrays the relationship between energy (E) and momentum (k) of electrons.
- The minimum energy of the conduction band and the maximum energy of the valence band are at the same value of k in direct band gap semiconductors, with GaAs as an example.
- The minimum energy of the conduction band and the maximum energy of the valence band occur at different values of k in indirect band gap semiconductors, exemplified by Si.
- Direct band gap semiconductors are efficient for optical devices because of direct electron recombination and photon emission.
- Indirect band gap semiconductors require phonon assistance in the recombination process, making them less efficient for light emission.
Electrons
- Electrons in the conduction band are mobile and contribute to electrical current.
- The concentration of electrons in the conduction band is denoted by 'n' (electrons/cm³).
- Electrons move in response to an electric field (drift) or a concentration gradient (diffusion).
- The effective mass ($m_n^*$) of an electron in a semiconductor is different from the free electron mass ($m_0$).
- The crystal lattice's periodic potential on electron motion is accounted for using $m_n^*$.
Holes
- Absence of an electron in the valence band creates a hole.
- Holes behave as positively charged particles.
- The concentration of holes in the valence band is denoted by 'p' (holes/cm³).
- Holes move in response to an electric field (drift) or a concentration gradient (diffusion).
- Hole effective mass ($m_p^*$) in a semiconductor differs from free electron mass ($m_0$).
- Effect of the periodic potential of the crystal lattice on the hole's motion is taken into account with $m_p^*$.
Effective Mass
- Electron and hole effective mass is an important parameter affecting mobility and other properties.
Intrinsic Semiconductor
- Made of a pure semiconductor crystal with no impurities.
- The number of electrons in the conduction band is equal to the number of holes in the valence band.
- $n = p = n_i$, where $n_i$ is the intrinsic carrier concentration.
- $n_i$ depends on the material and temperature.
- Silicon: $n_i \approx 1.5 \times 10^{10} cm^{-3}$ at 300 K.
- Germanium: $n_i \approx 2.5 \times 10^{13} cm^{-3}$ at 300 K.
- Gallium Arsenide: $n_i \approx 1.8 \times 10^6 cm^{-3}$ at 300 K.
- Intrinsic carrier concentration increases with temperature.
Temperature Dependence of $n_i$
- Intrinsic carrier concentration $n_i$ varies with temperature as:
- $n_i = \sqrt{N_cN_v}e^{-E_g/2kT}$
- $N_c$ represents effective density of states in the conduction band.
- $N_v$ represents effective density of states in the valence band.
- $E_g$ represents the energy gap.
- k represents Boltzmann's constant ($1.38 \times 10^{-23} J/K$ or $8.62 \times 10^{-5} eV/K$).
- T represents temperature in Kelvin.
- $N_c = 2(\frac{2\pi m_n^*kT}{h^2})^{3/2}$
- h represents Plank's constant ($6.626 \times 10^{-34} J \cdot s$).
- $N_v = 2(\frac{2\pi m_p^*kT}{h^2})^{3/2}$
- $n_i = \sqrt{N_cN_v}e^{-E_g/2kT}$
- Exponential term $e^{-E_g/2kT}$ dominates temperature dependence of $n_i$.
Example:
- Calculate intrinsic carrier concentration of silicon at 300 K.
- Given: $E_g = 1.12 eV$, $m_n^* = 1.08 m_0$, $m_p^* = 0.56 m_0$.
- $N_c = 2.8 \times 10^{19} cm^{-3}$
- $N_v = 1.04 \times 10^{19} cm^{-3}$
- $n_i = \sqrt{N_cN_v}e^{-E_g/2kT}$
- $n_i = 1.5 \times 10^{10} cm^{-3}$
Fermi Level
- The Fermi level ($E_F$) is the energy at which the probability of finding an electron is 50%.
- The Fermi level in an intrinsic semiconductor is located near the middle of the energy gap.
- $E_F = \frac{E_c + E_v}{2} + \frac{3}{4}kT \ln(\frac{m_p^}{m_n^})$
- If $m_n^* = m_p^*$, then $E_F = \frac{E_c + E_v}{2}$.
- The Fermi level is an important concept for understanding the behavior of semiconductor devices.
Doped Semiconductor
- Impurities added to an intrinsic semiconductor creates extrinsic semiconductors.
- Doping can change the conductivity of a semiconductor in a drastic manner.
- There are two types of doping: n-type and p-type.
n-type Semiconductor
- n-type semiconductors are created via doping with donor impurities.
- Donor impurities have more valence electrons than the semiconductor atoms they replace, with phosphorus in silicon as an example.
- Due the extra electron easily ionizing, it becomes a free electron in the conduction band.
- Donor atoms become positively charged ions.
- The concentration of donor impurities is denoted by $N_D$ (donors/cm³).
- Electron concentration is much larger than hole concentration ($n >> p$) in n-type material.
- Electrons are the majority carriers, and holes are the minority carriers.
p-type Semiconductor
- p-type semiconductors are created by adding acceptor impurities.
- With boron in silicon as an example, acceptor impurities have fewer valence electrons than the semiconductor atoms they replace.
- The missing electron creates a hole in the valence band.
- Acceptor atoms become negatively charged ions.
- The concentration of acceptor impurities is denoted by $N_A$ (acceptors/cm³).
- Hole concentration far exceeds electron concentration ($p >> n$) in p-type material.
- Holes are the material's majority carrier, while electrons are the minority.
Charge Neutrality
- Semiconductors must be electrically neural.
- Meaning total positive charge must equal total negative charge.
- $p + N_D = n + N_A$
- In n-type material ($N_D >> n_i$), $n \approx N_D$.
- In p-type material ($N_A >> n_i$), $p \approx N_A$.
Equilibrium Carrier Concentrations
- Product of electron and hole concentrations is constant at equilibrium:
- $np = n_i^2$
- In n-type material:
- $n_n \approx N_D$
- $p_n = \frac{n_i^2}{N_D}$
- In p-type material:
- $p_p \approx N_A$
- $n_p = \frac{n_i^2}{N_A}$
Fermi Level in Extrinsic Semiconductors
- Fermi level is closer to the conduction band in n-type semiconductors.
- $E_F = E_c - kT \ln(\frac{N_c}{N_D})$
- Fermi level is closer to the valence band in p-type semiconductors.
- $E_F = E_v + kT \ln(\frac{N_v}{N_A})$
Compensation
- Semiconductor contains both donor and acceptor impurities when compensation takes place.
- If $N_D > N_A$, material is n-type with $n \approx N_D - N_A$.
- If $N_A > N_D$, material is p-type with $p \approx N_A - N_D$.
- If $N_A = N_D$, the material is compensated, and the carrier concentrations are close to intrinsic.
Drift
- Motion of charge carriers due to an electric field constitutes drift.
- Drift velocity ($v_d$) is proportional to the electric field (E):
- $v_d = \mu E$
- $\mu$ is mobility (cm²/V·s).
- Electron mobility is denoted by $\mu_n$.
- Hole mobility is denoted by $\mu_p$.
- Drift current density (J) is given by:
- $J = qnv_d$ (for electrons)
- $J = qpv_d$ (for holes)
- $J = q(n\mu_n + p\mu_p)E$ (total current density)
- $q$ is elementary charge ($1.602 \times 10^{-19} C$).
Mobility
- Mobility depends on temperature and doping concentration.
- Lattice scattering (phonons) limits mobility at low doping concentrations.
- Ionized impurity scattering limits mobility at high doping concentrations.
- Increasing temperature decreases mobility due to increased lattice vibrations.
- Temperature dependence of mobility can be approximated as:
- $\mu \propto T^{-m}$
- m represents a material-dependent constant, such as m = 2.4 for Si.
- $\mu \propto T^{-m}$
Conductivity and Resistivity
- Conductivity ($\sigma$) measures how easily a material conducts electricity.
- $\sigma = q(n\mu_n + p\mu_p)$
- Resistivity ($\rho$) is inverse of conductivity.
- $\rho = \frac{1}{\sigma} = \frac{1}{q(n\mu_n + p\mu_p)}$
- In n-type material: $\sigma \approx qn\mu_n \approx qN_D\mu_n$
- In p-type material: $\sigma \approx qp\mu_p \approx qN_A\mu_p$
Diffusion
- Movement of charge carriers from a region of high concentration to a region of low concentration.
- Diffusion current density (J) is proportional to concentration gradient:
- $J = qD_n\frac{dn}{dx}$ (for electrons)
- $J = -qD_p\frac{dp}{dx}$ (for holes)
- $D_n$ represents electron diffusion coefficient (cm²/s).
- $D_p$ represents hole diffusion coefficient (cm²/s).
Einstein Relationship
- Diffusion coefficient and mobility are related by the Einstein relationship:
- $\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{q}$
Total Current
- The total current is the sum of the drift and diffusion currents.
- For electrons:
- $J_n = qn\mu_nE + qD_n\frac{dn}{dx}$
- For holes:
- $J_p = qp\mu_pE - qD_p\frac{dp}{dx}$
Generation
- Process by which electron-hole pairs are created.
- Electron-hole pairs are created via thermal energy through thermal generation.
- Electron-hole pairs are created when photons with energy greater than the band gap energy are absorbed through optical generation.
Recombination
- Electrons and holes annihilate each other in this process.
- Band-to-band recombination is when one electron in the conduction band binds with a hole in the valence band.
- Electrons and holes recombine through energy levels within the band gap (traps) through recombination via traps.
- Surface recombination occurs at the surface of the semiconductor.
Recombination Rate
- Number of electron-hole pairs that combine per unit time per volume.
- It is proportional to the excess carrier concentrations.
- $R = \frac{\Delta n}{\tau_n} = \frac{\Delta p}{\tau_p}$
- $\Delta n$ is excess electron concentration.
- $\Delta p$ is excess hole concentration.
- $\tau_n$ is electron lifetime.
- $\tau_p$ is hole lifetime.
- $R = \frac{\Delta n}{\tau_n} = \frac{\Delta p}{\tau_p}$
- Lifetime is average time that an excess carrier exists before recombining.
Direct Recombination
- Recombination rate in direct band gap semiconductors is given by:
- $R = B(np - n_i^2)$
- B represents the recombination coefficient.
- $R = B(np - n_i^2)$
Indirect Recombination (Shockley-Read-Hall)
- Recombination rate in direct band gap semiconductors is dominated by recombination through traps.
- The Shockley-Read-Hall (SRH) recombination rate is given by:
- $R = \frac{np - n_i^2}{\tau_p(n + n_1) + \tau_n(p + p_1)}$
- $\tau_p$ and $\tau_n$ are the hole and electron lifetimes, respectively.
- $n_1 = n_i e^{(E_t - E_i)/kT}$
- $p_1 = n_i e^{(E_i - E_t)/kT}$
- $E_t$ is the energy level of the trap.
- $E_i$ is intrinsic Fermi level.
- $R = \frac{np - n_i^2}{\tau_p(n + n_1) + \tau_n(p + p_1)}$
Surface Recombination
- Recombination at the surface of a semiconductor is characterized by the surface recombination velocity (S).
- $R_s = S\Delta n$
Low-Level Injection
- When excess carrier concentration is smaller than majority carrier concentration.
- In n-type material: $\Delta n p_0$
Continuity Equation
- Describes the time and space dependence of carrier concentrations.
- For electrons:
- $\frac{\partial n}{\partial t} = \frac{1}{q}\frac{\partial J_n}{\partial x} + G_n - R_n$
- $G_n$ represents generation rate of electrons.
- $R_n$ represents recombination rate of electrons.
- $\frac{\partial n}{\partial t} = \frac{1}{q}\frac{\partial J_n}{\partial x} + G_n - R_n$
- For holes:
- $\frac{\partial p}{\partial t} = -\frac{1}{q}\frac{\partial J_p}{\partial x} + G_p - R_p$
- $G_p$ represents generation rate of holes.
- $R_p$ represents recombination rate of holes.
- $\frac{\partial p}{\partial t} = -\frac{1}{q}\frac{\partial J_p}{\partial x} + G_p - R_p$
Steady State
- When carrier concentrations do not change with time.
- $\frac{\partial n}{\partial t} = 0$
- $\frac{\partial p}{\partial t} = 0$
Diffusion Length
- Average distance that a carrier diffuses before recombining.
- For electrons:
- $L_n = \sqrt{D_n\tau_n}$
- For holes:
- $L_p = \sqrt{D_p\tau_p}$
Example
- Consider long p-type semiconductor bar with steady-state excess electron concentration injected at one end ($x = 0$).
- Excess electron concentration decays exponentially with distance:
- $\Delta n(x) = \Delta n(0)e^{-x/L_n}$
Chapter Summary
- Energy bands determine electrical properties of semiconductors.
- Electrons and holes are the carrier charges in semiconductors.
- Intrinsic semiconductors are pure, while extrinsic semiconductors are doped with impurities.
- Doping creates n-type or p-type material.
- Carrier transport occurs through drift and diffusion.
- Drift is caused by an electric field, while diffusion is caused by a concentration gradient.
- Generation and recombination are processes that create and annihilate electron-hole pairs.
- Continuity equation tracks the time and space reliance of carrier concentrations.
Algorithmic Complexity
Definition
- Measure of time and space needed by an algorithm for an input of a given size
- Indicates how fast the algorithm runs
- Described with Asymptotic notation, Big O being most common.
Importance
- Determines required resources to run a program
- Compares efficiency of different algorithms and determine if they are suitable for specific use cases and constraints
- Algorithm complexity doesn't determine the quality of the algorithm
Big O scale
- Describes upper bound of time or space complexity
- $O(1)$ - indicates Excellent bound
- $O(log n)$ - indicates Great bound
- $O(n)$ - indicates a Good bound
- $O(n log n)$ - indicates a Fair bound
- $O(n^2)$ indicates a Bad bound
- $O(2^n)$ indicates a Horrible bound
- $O(n!)$ indicates a Nightmare bound
Constant Time - O(1)
- The time required is independent of input size
def constant_time(items: list):
return items
Logarithmic Time - O(log n)
- Time increased logarithmically as input size increases
def logarithmic_time(items: list, item: int):
low = 0
high = len(items) - 1
while low item:
high = mid - 1
else:
low = mid + 1
return None
Linear Time - O(n)
- Time required increases linearly as input size increases
def linear_time(items: list):
for item in items:
print(item)
Log-Linear Time - O(n log n)
- Time required increases linearly with a logarithmic factor
def log_linear_time(items: list):
if len(items) = pivot]
return quick_sort(left) + [pivot] + quick_sort(right)
Quadratic Time - O(n^2)
- Time required increases quadratically as input size increases
def quadratic_time(items: list):
for item in items:
for item2 in items:
print(item, item2)
O(1) Space complexity
- The algorithm uses constant space
def constant_space(items: list):
sum = 0
for item in items:
sum += item
return sum
O(n) Space complexity
- The Algorithm uses linear space
def linear_space(items: list):
new_list = []
for item in items:
new_list.append(item * 2)
return new_list
Calculus - Newton's Method
Questions
- Use Newton's method to approximate a root of various equations, iterating from $x_0$ to $x_2$
Questions
- In question 8, find the point for function f(x) to a minimum value based on $x_0$
Machine Learning for Algorithmic Trading
- Focuses on enabling systems to learn from data and is a subset of AI.
- Differs from Traditional Programming
- Traditional Programming: Data + Program $\rightarrow$Output
- Machine Learning: Data + Output $\rightarrow$ Program
- Learns patterns and relationships from data instead of programming it.
Types of Machine Learning
Supervised learning
- Training data is labeled.
- Algorithms learn to map inputs to outputs.
- Examples: Regression, Classification.
Unsupervised Learning
- Training data is unlabeled.
- Algorithms learn to find patterns and structure in the data.
- Examples: Clustering, Dimensionality Reduction.
Reinforcement Learning
- Algorithms learn to make decisions by interacting with an environment.
- Algorithms receive rewards or penalties for their actions.
- Goal: Maximize cumulative reward.
Advantages of Machine Learning in Trading
Pattern Recognition
- Identify complex patterns and relationships in financial data that humans may miss.
Adaptability
- Adapt to changing market conditions and new data.
Automation
- Automate trading strategies, reducing the need for manual intervention.
Improved Decision Making
- Enhance trading decisions with data-driven insights.
Challenges of Machine Learning in Trading
Overfitting
- Models may perform well on training data but poorly on new data.
Data Quality
- Financial data can be noisy and incomplete.
Computational Resources
- Training complex models can be computationally expensive.
Interpretability
- Some models are difficult to interpret, making it hard to understand why they make certain predictions.
Linear Regression
Description
- Models the relationship between a dependent variable and one or more independent variables
- Using linear equation to observed data.
Use Cases
- Predicting stock prices
- Forecasting volatility.
Formula
$Y = \beta_0 + \beta_1X_1 + \beta_2X_2 +... + \epsilon$ - $Y$ is the dependent variable - $X_i$ is the independent variables - $\beta_i$ are the coefficients - $\epsilon$ is the error term
Logistic Regression
Description
- Predicts probability of binary outcome (0 or 1).
Use Cases
- Predicting whether a stock price will go up or down.
- Classifying trading signals.
Equation
$P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1X_1 + \beta_2X_2 +...)}}$
Support Vector Machines (SVM)
Description
- Finds optimal hyperplane to separate data into different classes.
Uses Cases
- Classification, regression.
Key Concept
- Kernel Trick maps data into higher dimensional space.
Terminology
- Support Vectors are data points closest to the hyperplane.
Decision Trees
Description
- Builds a tree-like model to make decisions based on input features.
Use Cases
- Classification, regression.
Advantage
- Easy to interpret.
Disadvantage
- Prone to overfitting.
Random Forest
Description
- Ensemble of decision trees.
Use Cases
- Classification, regression.
Advantage
- Reduces overfitting, high accuracy.
Neural Networks
Description
- Complex models inspired by the structure of the human brain.
Use Cases
- Time series forecasting, pattern recognition.
Neural Network Types
Feedforward Neural Networks (FFNN)
Recurrent Neural Networks (RNN)
Long Short-Term Memory (LSTM)
Convolutional Neural Networks (CNN)
K-Means Clustering
Description
- Partitions data into k clusters based on similarity.
Use Cases
- Identifying market segments, grouping similar stocks.
Algorithm
Initialize k centroids.
Assign each data point to the nearest centroid.
Update centroids based on the mean of the data points in each cluster.
Repeat steps 2 and 3 until convergence.
Feature Engineering
- Process of selecting, transforming, and creating features from raw data to improve model performance.
Common Financial Features
Moving Averages
- Average price over a specific period.
Relative Strength Index (RSI)
- Measures magnitude of recent price changes to evaluate overbought or oversold conditions.
Moving Average Convergence Divergence (MACD)
- Shows the relationship between two moving averages of a price.
Bollinger Bands
- Volatility indicator using a moving average and standard deviations.
Volume
- Number of shares traded in a given period.
Volatility
- Measure of price fluctuations.
Metrics for Regression
Mean Squared Error (MSE)
- Average of the squared differences between predicted and actual values.
R-squared ($R^2$)
- Proportion of the variance in the dependent variable that is predictable from the independent variables
- $R^2 = 1 - \frac{SSE}{SST}$
- SSE is the sum of squared Errors
- SST is the total sum of Squares
- $R^2 = 1 - \frac{SSE}{SST}$
Metrics for Classification
Accuracy
- Proportion of correctly classified instances.
Precision
- Proportion of true positives out of all predicted positives.
Recall
- Proportion of true positives out of all actual positives.
F1-Score
- Harmonic mean of precision and recall.
- $F1 = 2 * \frac{Precision * Recall}{Precision + Recall}$
Confusion Matrix
- Table showing performance of a classification model.
Implementing Machine Learning in Trading requires several steps
Data Collection and Preparation
- Gather historical financial data from reliable sources.
- Clean and preprocess the data (handle missing values, outliers).
Feature Engineering
- Create relevant features from the raw data
Model Selection
- Choose appropriate machine learning algorithms based on the problem type.
Training and Validation
- Split the data into training, validation, and test sets.
- Train the model on the training data.
- Tune hyperparameters using the validation set.
Backtesting
- Evaluate the model's performance on historical data.
Deployment
- Implement the model in a live trading environment.
Monitoring and Maintenance
- Continuously monitor the model's performance and retrain as needed.
Tools and Libraries
The Python Programming Language is popular due to its open source coding libraries
Pandas
- Offers data manipulation and analysis.
NumPy
- Offers numerical computing.
Scikit-learn
- Offers various machine learning algorithms.
TensorFlow
- Offers deep learning frameworks.
Keras
- Offers high-level neural networks API.
Matplotlib, Seaborn
- Provides Data visualization.
Machine learning offers powerful tools for algorithmic trading
- Careful planning, data preparation, and model evaluation are crucial for success.
- Continuous learning and adaptation are essential in the dynamic world of financial markets.
Prérequis Mathématiques
Defintions
Ensemble
- Collection d'objets.
Cardinal
- Nombre d'éléments.
Ensemble vide
- Ensemble ne contenant aucun élément noté $\emptyset$.
Opérations de base
Union
- $A \cup B = {x | x \in A \text{ ou } x \in B}$
Intersection
- $A \cap B = {x | x \in A \text{ et } x \in B}$
Différence
- $A \setminus B = {x | x \in A \text{ et } x \notin B}$
Complémentaire
- $\bar{A} = {x | x \notin A}$
Nummber sets
Entiers naturels
- $\mathbb{N} = {0, 1, 2, 3,...}$
Entiers relatifs
- $\mathbb{Z} = {..., -2, -1, 0, 1, 2,...}$
Nombres rationnels
- $\mathbb{Q} = {p/q | p \in \mathbb{Z}, q \in \mathbb{N^*}}$
Nombres réels
- $\mathbb{R}$: inclut $\mathbb{Q}$ et les irrationnels ($\sqrt{2}, \pi$, etc.)
Nombres complexes
- $\mathbb{C} = {a + bi | a, b \in \mathbb{R}, i^2 = -1}$
Defintions
Fonction
- Relation entre un ensemble de départ (domaine) et un ensemble d'arrivée (codomaine) telle que chaque élément du domaine est associé à un unique élément du codomaine.
Domaine
- Ensemble de toutes les valeurs d'entrée possibles pour lesquelles la fonction est définie.
Image
- Ensemble de toutes les valeurs de sortie possibles de la fonction.
Types de fonctions
Linéaire
- $f(x) = ax + b$
Polynômiale
- $f(x) = a_n x^n + a_{n-1} x^{n-1} +... + a_1 x + a_0$
Exponentielle
- $f(x) = a^x$
Logarithmique
- $f(x) = log_a(x)$
Trigonométrique
- sin(x), cos(x), tan(x), etc.
Opérations sur les fonctions
Addition
- $(f + g)(x) = f(x) + g(x)$
Soustraction
- $(f - g)(x) = f(x) - g(x)$
Multiplication
- $(f \cdot g)(x) = f(x) \cdot g(x)$
Division
- $(f / g)(x) = f(x) / g(x)$
Composition
- $(f \circ g)(x) = f(g(x))$
Fonctions spéciales
Valeur absolue
$|x| = \begin{cases} x, & \text{si } x \geq 0 \ -x, & \text{si } x < 0 \end{cases}$
Partie entière
- $\lfloor x \rfloor$ = plus grand entier inférieur ou égal à x.
Trigonométrie
Cercle trigonométrique
- Un cercle de rayon 1 centré à l'origine d'un plan cartésien.
Fonctions trigonométriques de base
Sinus (sin)
- Rapport du côté opposé à l'hypoténuse dans un triangle rectangle.
Cosinus (cos)
- Rapport du côté adjacent à l'hypoténuse dans un triangle rectangle.
Tangente (tan)
- Rapport du côté opposé au côté adjacent dans un triangle rectangle.
- tan(x) = sin(x) / cos(x).
Identités trigonométriques importantes
- sin$^2$(x) + cos$^2$(x) = 1
- sin(2x) = 2sin(x)cos(x)
- cos(2x) = cos$^2$(x) - sin$^2$(x)
Valeurs remarquables
Angle (degrés) | Angle (radians) | sin(x) | cos(x) | tan(x) |
---|---|---|---|---|
0 | 0 | 0 | 1 | 0 |
30 | $\pi/6$ | $1/2$ | $\sqrt{3}/2$ | $\sqrt{3}/3$ |
45 | $\pi/4$ | $\sqrt{2}/2$ | $\sqrt{2}/2$ | 1 |
60 | $\pi/3$ | $\sqrt{3}/2$ | $1/2$ | $\sqrt{3}$ |
90 | $\pi/2$ | 1 | 0 | Non défini |
Limites
Définition
- La limite d'une fonction f(x) lorsque x approche a, notée $\lim_{x \to a} f(x) = L$, signifie que les valeurs de f(x) se rapprochent arbitrairement près de L lorsque x se rapprochent de a.
Propriétés
- $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- $\lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x)$
- $\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
- $\lim_{x \to a} [f(x) / g(x)] = \lim_{x \to a} f(x) / \lim_{x \to a} g(x)$, si $\lim_{x \to a} g(x) \neq 0$
Limites Importantes
- $\lim_{x \to 0} \frac{sin(x)}{x} = 1$
- $\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$
Dérivées
Définition
- La dérivée d'une fonction f(x) en un point x, notée f'(x) ou $\frac{df}{dx}$, représente le taux de variation instantané de la fonction en ce point.
- $f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$
Règles de Dérivation
- $(c)' = 0$ (c est une constante)
- $(x^n)' = nx^{n-1}$
- $(cf(x))' = cf'(x)$
- $(f(x) + g(x))' = f'(x) + g'(x)$
- $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$ (règle du produit)
- $(f(x) / g(x))' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$ (règle du quotient)
- $(f(g(x)))' = f'(g(x)) \cdot g'(x)$ (règle de la chaîne)
Dérivées de Fonctions Élémentaires
- $(sin(x))' = cos(x)$
- $(cos(x))' = -sin(x)$
- $(tan(x))' = sec^2(x) = 1 + tan^2(x)$
- $(e^x)' = e^x$
- $(ln(x))' = \frac{1}{x}$
Applications des Dérivées
- Optimisation, and analyse de function.
Calcul Intégral
Intégrales Indéfinies
Définition
- Une intégrale indéfinie d'une fonction f(x), notée $\int f(x) dx$, est une fonction F(x) telle que F'(x) = f(x).
- $\int f(x) dx = F(x) + C$, où C est la constante d'intégration.
Règles d'Intégration
- $\int x^n dx = \frac{x^{n+1}}{n+1} + C$, pour $n \neq -1$
- $\int \frac{1}{x} dx = ln|x| + C$
- $\int e^x dx = e^x + C$
- $\int sin(x) dx = -cos(x) + C$
- $\int cos(x) dx = sin(x) + C$
Techniques d'Intégration
- Intégration par substitution
- Intégration par parties
- Décomposition en éléments simples
Intégrales Définies
Définition
- Une intégrale définie d'une fonction f(x) sur un intervalle [a, b], notée $\int_{a}^{b} f(x) dx$, représente l'aire algébrique sous la courbe de f(x) entre a et b
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.