Podcast
Questions and Answers
Which equations describe the Maxwell electromagnetic equations in integral form?
Which equations describe the Maxwell electromagnetic equations in integral form?
- $\nabla \cdot \textbf{E} = \frac{\rho}{\varepsilon_0}$ and $\nabla \times \textbf{E} = -\frac{\partial \textbf{B}}{\partial t}$
- $\nabla \cdot \textbf{E} = 0$ and $\nabla \times \textbf{E} = \mu_0\textbf{J} + \mu_0\varepsilon_0\frac{\partial \textbf{B}}{\partial t}$
- $\nabla \cdot \textbf{B} = \frac{\rho}{\varepsilon_0}$ and $\nabla \times \textbf{B} = -\frac{\partial \textbf{E}}{\partial t}$
- $\nabla \cdot \textbf{B} = 0$ and $\nabla \times \textbf{B} = \mu_0\textbf{J} + \mu_0\varepsilon_0\frac{\partial \textbf{E}}{\partial t}$ (correct)
What is the physical significance of the Maxwell equations?
What is the physical significance of the Maxwell equations?
- They describe the behavior of gravitational waves
- They describe the behavior of sound waves
- They describe the behavior of charged particles in electric and magnetic fields (correct)
- They describe the behavior of electromagnetic waves
What is the Ampere Circuital Law?
What is the Ampere Circuital Law?
- $\nabla \cdot \textbf{B} = \frac{\rho}{\varepsilon_0}$ and $\nabla \times \textbf{B} = -\frac{\partial \textbf{E}}{\partial t}$
- $\nabla \cdot \textbf{B} = 0$ and $\nabla \times \textbf{B} = \mu_0\textbf{J} + \mu_0\varepsilon_0\frac{\partial \textbf{E}}{\partial t}$
- $\nabla \cdot \textbf{E} = 0$ and $\nabla \times \textbf{E} = -\frac{\partial \textbf{B}}{\partial t}$ (correct)
- $\nabla \cdot \textbf{E} = \frac{\rho}{\varepsilon_0}$ and $\nabla \times \textbf{E} = -\mu_0\textbf{J}$