Electric Charge and Field Concepts Quiz

DedicatedLesNabis avatar
DedicatedLesNabis
·
·
Download

Start Quiz

Study Flashcards

12 Questions

विद्युत चार्ज की दो रूप होती हैं: सकारात्मक और नकारात्मक।

False

जब विशेष वस्तुएं मिलाकर रगड़ते हैं, तो इलेक्ट्रॉन ट्रांसफर हो सकता है, जिससे पृष्ठों पर पॉजिटिव या नेगेटिव चार्ज की एकत्रिति होती है।

False

कुल चार्ज की मात्रा को n के साथ गुणित करके की जा सकती है: Q = n / ε

False

वैक्यूम में, अलग-अलग चार्ज के पास पृथक होने पर, एक परस्पर क्रिया महसूस होती है; वे करीब लाए गए होंते हैं,तो वे प्रतिकूल क्रिया महसूस करते हैं।

False

गाउस का कानून 2D में समानांतर पंक्तियों पर लागू होता है।

False

इलेक्ट्रिक पोटेंशियल स्थिर चार्ज के 2D में मापा जा सकता है।

False

विद्युत चुंबकीय क्षेत्र कार्जित अवशिष्ट चार्ज पर निर्भर करता है।

False

गौस का नियम बताता है कि एक बंद सतह के माध्यम से होने वाला पूर्ण फ्लक्स एन्क्लोज किए गए चार्ज के अनुपात में होता है।

False

विद्युत प्रसार के माध्यम से समीप से समीपता के साथ बढ़ती है और एक मानक प्रियांक पर महत्ता प्राप्त करने के लिए आवश्यक काम कीसे पूरी करता है।

False

सकल गौसियन सतह से गुजरने वाली संपूर्ण फ्लक्स उस सतह पर मौजूद होने वाले कुल चार्ज के समान होती है।

False

विद्युतीय सम्भावना प्रति मापन, एक ऐसी संभावित सुनिश्चित समीकरण होती है, जिससे प्रापित परिमाण प्रकाशित होता है

False

Coulomb's Law कहता है कि 2 संभावित प्रोपर्शनल चार्ज, 2 संभावित प्रोपर्शनल 2/र^2

False

Study Notes

Electric Charge and Field

At its core, electricity is the movement of electric charge—a fundamental property of matter. This phenomenon, which we can observe around us every day through everything from lightning strikes to computer circuits, relies upon two key aspects: electric charge and the field it generates. In this exploration, we delve into these essential concepts while also introducing their applications via Gauss’s law, electric potential, and Coulomb’s law.

Electric Charge

Charged particles, like electrons and protons, make up electric charge, which comes in two forms: positive (+) and negative (-). When equal amounts of opposite charges accumulate near one another, they create an electric force between them. For example, rubbing certain materials together can transfer electrons, leading to a buildup of either excess positive or negative charge on surfaces.

One unit of charge is known as a coulomb (C), although smaller units such as microcoulombs (µC) and nanocoulombs (nC) are frequently used due to the small amounts of charge found in everyday systems. The total charge (Q) carried by some number ((n)) of charged particles with each carrying charge ((\epsilon)), can be calculated using the formula:

[ Q = n \times \epsilon ]

In vacuum, such isolated charges experience an attractive electrostatic force when separated by space; they repel when brought closer together.

Electric Field

An electric field surrounds any charged particle, exerting forces on nearby charges. As more charges come close, the strength of the electric field increases until it reaches a maximum intensity near the original charge. Once past the point of closest approach, the field diminishes rapidly as distance grows (based on inverse square laws).

The direction of the electric field lines always points away from positive charges towards negative ones, making visualizing these fields simple. If you imagine drawing imaginary arrows pointing outwards from a positively charged sphere, for instance, those arrowheads would all point in the same direction, indicating the net force applied to a negatively charged object placed within the field.

Gauss's Law

Gauss’s law represents how charge resides within and distributes throughout an electric field. It gives a mathematical description of how charge behaves inside closed surface regions or volumes called Gaussian surfaces. Essentially, Gauss's law states that the total amount of flux passing through a closed Gaussian surface is proportional to the enclosed charge. Mathematically, Gauss's law is expressed as:

[ \oint_S E \cdot dA = \frac{q_{enc}}{\varepsilon_o} ]

where (E) is the electric field vector outside the charged region, (dA) the infinitesimal area element, (q_{enc}) the total enclosed charge, and (\varepsilon_o) the permittivity of free space.

Electric Potential

While electric fields describe the physical direction and magnitude of forces acting on charged objects, electrical potential quantifies the energy stored in an electric field relative to a reference point. It indicates the work required to move a test charge from a chosen datum to the position being considered in the given electric field. Electric potential can be represented mathematically using the concept of voltage ((V)).

Electrical potential difference between two points equals the change in potential energy per unit charge moved between the points:

[ V = \Delta U / q ]

This equation demonstrates why moving a test charge through a fixed path in an electric circuit results in work done against the electric field, commonly referred to as electric power delivered.

Coulomb's Law

Named after Charles-Augustin de Coulomb, who determined it experimentally in the late 18th century, Coulomb's law describes the electrostatic force of attraction or repulsion between two point charges in a vacuum. Given point charges (Q_1) and (Q_2) located at positions (r_1) and (r_2) respectively, their mutual electrostatic force (F) obeys the following inverse square relationship:

[ F = k_e \frac{|Q_1| |Q_2|}{r^2} ]

Here, (k_e) is the Coulomb constant, representing the propensity for electric charge interaction ((= 9 N m² / C²)). By recognizing Coulomb's formulation, physicists could explain phenomena related to static charges, develop theories regarding dielectrics, capacitors, and even predict electron behavior in atoms.

Test your understanding of electric charge and field concepts including Coulomb's law, Gauss's law, electric potential, and the behavior of charged particles. Explore the fundamental principles behind electric interactions and applications in everyday systems.

Make Your Own Quizzes and Flashcards

Convert your notes into interactive study material.

Get started for free

More Quizzes Like This

Use Quizgecko on...
Browser
Browser