Direction Cosines and Euclidean Space Quiz
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What are the direction cosines of a vector in three-dimensional Euclidean space?

  • \alpha = \frac{v_x}{v_x^2 - v_y^2 - v_z^2}, \beta = \frac{v_y}{v_x^2 - v_y^2 - v_z^2}, \gamma = \frac{v_z}{v_x^2 - v_y^2 - v_z^2}
  • \alpha = \frac{v_x}{v_x^2 \cdot v_y^2 \cdot v_z^2}, \beta = \frac{v_y}{v_x^2 \cdot v_y^2 \cdot v_z^2}, \gamma = \frac{v_z}{v_x^2 \cdot v_y^2 \cdot v_z^2}
  • \alpha = \frac{v_x}{v_x^2 + v_y^2 + v_z^2}, \beta = \frac{v_y}{v_x^2 + v_y^2 + v_z^2}, \gamma = \frac{v_z}{v_x^2 + v_y^2 + v_z^2}
  • \alpha = \frac{v_x}{\sqrt{v_x^2 + v_y^2 + v_z^2}}, \beta = \frac{v_y}{\sqrt{v_x^2 + v_y^2 + v_z^2}}, \gamma = \frac{v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}} (correct)
  • What do the direction cosines represent?

  • The angles between the vector and the three negative coordinate axes
  • The distances from the origin to the end of the vector
  • The magnitudes of the vector components
  • The contributions of each component of the basis to a unit vector in that direction (correct)
  • How are the direction cosines related to the components of the vector?

  • \alpha = v_x^2, \beta = v_y^2, \gamma = v_z^2
  • \alpha = v_x, \beta = v_y, \gamma = v_z
  • \alpha = \frac{v_x}{\sqrt{v_x^2 + v_y^2 + v_z^2}}, \beta = \frac{v_y}{\sqrt{v_x^2 + v_y^2 + v_z^2}}, \gamma = \frac{v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}} (correct)
  • \alpha = \frac{v_x}{v_x^2 + v_y^2 + v_z^2}, \beta = \frac{v_y}{v_x^2 + v_y^2 + v_z^2}, \gamma = \frac{v_z}{v_x^2 + v_y^2 + v_z^2}
  • If v is a Euclidean vector in three-dimensional space given by $v = 3i - 4j + 5k$, what are the direction cosines?

    <p>\alpha = \frac{3}{\sqrt{50}}, \beta = \frac{-4}{\sqrt{50}}, \gamma = \frac{5}{\sqrt{50}}</p> Signup and view all the answers

    What are the direction cosines of a unit vector in the direction of the positive x-axis?

    <p>\alpha = 1, \beta = 0, \gamma = 0</p> Signup and view all the answers

    More Like This

    Use Quizgecko on...
    Browser
    Browser