Podcast
Questions and Answers
What are the dimensions of viscosity in the formula provided?
What are the dimensions of viscosity in the formula provided?
Which of the following represents a combination of fundamental physical quantities?
Which of the following represents a combination of fundamental physical quantities?
What is the dimensional formula of angular momentum?
What is the dimensional formula of angular momentum?
The dimensions [ML^{-2}T^{-2}] are associated with which physical quantity?
The dimensions [ML^{-2}T^{-2}] are associated with which physical quantity?
Signup and view all the answers
What units correspond to the constant of proportionality for damping force in an oscillator?
What units correspond to the constant of proportionality for damping force in an oscillator?
Signup and view all the answers
What is the dimensional formula for the product (ABCD) if the displacement is given by y = A sin(Bx + Ct + D)?
What is the dimensional formula for the product (ABCD) if the displacement is given by y = A sin(Bx + Ct + D)?
Signup and view all the answers
Which of the following is true regarding the dimensions of strain?
Which of the following is true regarding the dimensions of strain?
Signup and view all the answers
Which physical quantity has the dimension of [ML2T-3]?
Which physical quantity has the dimension of [ML2T-3]?
Signup and view all the answers
What are the dimensions of torque?
What are the dimensions of torque?
Signup and view all the answers
In the equation f = amxky, what is the significance of the constant a?
In the equation f = amxky, what is the significance of the constant a?
Signup and view all the answers
Study Notes
Dimensional Formulas and Significant Figures
- The viscosity of oil can be described by the formula η = (P(r-x)^2) / (4vl). The dimensional formula for viscosity (η) is [ML^-1T^-1].
- Derived units are units of physical quantity that can be expressed as a combination of fundamental physical quantities.
- Angular momentum has the dimensional formula [ML^2T^-1].
- The dimensional formula [ML^2T^-2] represents moment of force.
- The velocity of light in vacuum is a dimensional constant as its value remains constant regardless of the frame of reference.
- The units of the constant of proportionality for damping force on an oscillator are [kgs^-1].
- The dimensional formula for (ABCD) in the expression y = A sin (Bx + Ct + D) is [M^0L^0T^0].
- Strain is a dimensionless quantity.
- Power has the dimensional formula [ML^2T^-3].
- The solid angle subtended by the periphery of an area 1cm^2 at a point situated symmetrically at a distance of 5 cm from the area is 4 x 10^-2 steradians.
- If the speed of light in vacuum is unity, the distance between the Sun and the Earth in terms of the new unit is 500 units.
- Torque has the dimensions [ML^2T^-2].
- Torque and potential energy have the same dimensions.
- Rounding off 2.745 and 2.735 to 3 significant figures gives 2.75 and 2.74 respectively.
- The number 900.06 has 5 significant digits.
- The numbers 4.8000 x 10^4 and 48000.50 have 5 and 7 significant figures respectively.
- Kinetic energy has the same dimensions as work.
- The density of a body with mass 4.237g and volume 2.5 cm^3 is 1.7 g cm^-3.
- The number 8.1000 has 5 significant digits.
- If momentum (P), area (A) and time (T) are taken as fundamental quantities, then energy has the dimensional formula [P^1A^1/2T^-1].
- Hubble's constant has the dimension of [T^-1].
- Coeffcient of viscosity has the dimensions [ML^-1T^-1].
- Physical quantities are measurable properties of a system or object.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
This quiz explores the concept of dimensional formulas and significant figures in physics. It covers various physical quantities including viscosity, angular momentum, and the dimensional formula for power. Test your understanding of derived units and dimensionless quantities with insightful questions.