Dimensional Analysis Problems
10 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What does the variation of pressure per unit of length depend on?

The weight of the water through the pipe, the speed of the water, and the acceleration of gravity.

Determine the dimensions of 'Q' from the equation: $Sen\theta = \frac{PRx + QBz}{m}$.

The dimensions of 'Q' need to be established based on dimensional homogeneity.

What are the dimensions of 'z' in the equation: $V = \frac{3V^2aFy}{Sen(zay)} - xF$?

The dimensions of 'z' must be derived from the equation based on dimensional consistency.

What should be the value of 'P' for the expression: $\sum_{i=1}^{n}D_1ce= \frac{e^{-Pvt}}{D_0}$ to be dimensionally correct?

<p>The value of 'P' is to be determined to ensure dimensional correctness.</p> Signup and view all the answers

Find the dimensional equation of 'K' from: $K^2 = \frac{F}{6\sqrt{PD^2V^{-1}}}$.

<p>The dimensional equation of 'K' must be derived from the given relation.</p> Signup and view all the answers

What is the unit of magnetic permeability μ in the equation: $B = \frac{\mu I}{2\pi r}$?

<p>The unit of magnetic permeability μ in the S.I is to be calculated.</p> Signup and view all the answers

Find the dimensional equation of 'X' in the relationship: $\frac{F}{V} = \frac{9.8 * P * \sqrt{5} * m * sen(37°) }{X}$.

<p>The dimensional equation of 'X' should be evaluated from the given expression.</p> Signup and view all the answers

What is the dependence of 'v' on viscosity 'η', density 'p', diameter 'D', and constant 'R'?

<p>The dependence needs to be evaluated based on characteristics of fluid mechanics.</p> Signup and view all the answers

Find the dimensional equation of 'E' in a unit system where velocity, mass, and force are fundamental.

<p>The dimensional equation of 'E' must be determined based on pressure and density.</p> Signup and view all the answers

What is the value of [K] in the equation: $U_E = \frac {kQ^2}{d}$?

<p>The value of [K] needs to be derived from electric potential energy considerations.</p> Signup and view all the answers

Study Notes

Dimensional Analysis Problems

  • Problem 1:

    • The variation of pressure per unit length in a pipe depends on the weight of water, water speed, and gravitational acceleration.
    • The goal is to determine a formula that represents this relationship using a constant 'k'.
  • Problem 2:

    • The given equation is: $Sen\theta = \frac{PRx + QBz}{m}$.
    • The dimensions of 'm' are mass (M).
    • The dimensions of 'R' are length (L).
    • The dimensions of 'x' are time (T).
    • The dimensions of 'B' are force (MLT⁻²).
    • The dimensions of 'Z' are velocity (LT⁻¹).
    • The objective is to find the dimensions of 'Q' to make the equation dimensionally homogeneous.
  • Problem 3:

    • The equation is: $V = \frac{3V^2aFy}{Sen(zay)} - xF$.
    • The dimensions of 'V' are velocity (LT⁻¹).
    • The dimensions of 'F' are force (MLT⁻²).
    • The dimensions of 'a' are acceleration (LT⁻²).
    • The goal is to determine the dimensions of 'z'.
  • Problem 4:

    • The equation is: $\sum_{i=1}^{n}D_1ce= \frac{e^{-Pvt}}{D_0}$.
    • The dimensions of 'v' are velocity (LT⁻¹).
    • The dimensions of 'D0' and 'D1' are density (ML⁻³).
    • The dimensions of 'c' and 'e' are length (L).
    • The dimensions of 't' are ML⁻¹T⁻¹.
    • The objective is to find the value of 'P' that makes the equation dimensionally correct.
  • Problem 5:

    • The equation is: $K^2 = \frac{F}{6\sqrt{PD^2V^{-1}}}$.
    • The dimensions of 'F' are force (MLT⁻²).
    • The dimensions of 'P' are pressure (ML⁻¹T⁻²).
    • The dimensions of 'D' are density (ML⁻³).
    • The dimensions of 'V' are velocity (LT⁻¹).
    • The objective is to find the dimensional equation of 'K'.
  • Problem 6:

    • The equation: $B = \frac{\mu I}{2\pi r}$.
    • The objective is to find the SI unit of magnetic permeability 'μ' in terms of Henry (H).
  • Problem 7:

    • The equation is: $\frac{F}{V} = \frac{9,8 * P * \sqrt{5} * m * sen(37°) }{X}$.
    • The dimensions of 'P' are power (ML²T⁻³).
    • The dimensions of 'V' are volume (L³).
    • The dimensions of 'F' are force (MLT⁻²).
    • The dimensions of 'm' are length (L).
    • The objective is to find the dimensional equation of 'X'.
  • Problem 8:

    • The critical velocity 'v' of a liquid flow depends on viscosity 'η', density 'ρ', pipe diameter 'D', and a dimensionless constant 'R'.
    • The dimensions of 'η' are ML⁻¹T⁻¹.
    • The objective is to determine the dependence of 'v' on 'η', 'ρ', 'D', and 'R'.
  • Problem 9:

    • A new system defines velocity (A), mass (B), and force (C) as fundamental magnitudes.
    • Pressure is defined as 'E = pressure x density'.
    • The objective is to find the dimensional equation of 'E' in this new system.
  • Problem 10:

    • The electric potential energy equation is: $U_E = \frac {kQ^2}{d}$.
    • The objective is to find the dimensions of 'k' ([K]).

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

Análisis Dimensional PDF

Description

Test your understanding of dimensional analysis with these problems that explore the relationships between pressure, mass, velocity, and force. Each problem challenges you to derive dimensions and ensure equations are dimensionally homogeneous. Perfect for physics students looking to sharpen their analytical skills!

More Like This

Dimensional Analysis in Physics
9 questions
Dimensional Analysis Problems
8 questions

Dimensional Analysis Problems

TemptingNovaculite5164 avatar
TemptingNovaculite5164
Use Quizgecko on...
Browser
Browser