Differential Calculus Problems

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

Given $y = \tan^{-1}(\frac{4x}{1+5x^2}) + \cot^{-1}(\frac{3-2x}{2+3x})$, determine $\frac{dy}{dx}$.

  • $\frac{5}{1+25x^2}$
  • $0$ (correct)
  • $\frac{5}{1-25x^2}$
  • $-\frac{5}{1+25x^2}$

If $xy = 1 + \log y$ and $k \frac{dy}{dx} + y^2 = 0$, find an expression for $k$.

  • $1 - 2xy$
  • $xy - 1$
  • $\frac{1}{xy - 1}$ (correct)
  • $1 + xy$

If $x = 2at^2$ and $y = at^4$, determine the value of $\frac{d^2y}{dx^2}$ at $t = 2$.

  • $4$
  • $\frac{1}{2a}$ (correct)
  • $-\frac{1}{2a}$
  • $2a$

Given $y = e^{m \sin^{-1} x}$ and $(1 - x^2)(\frac{dy}{dx})^2 = Ay^2$, find the value of $A$.

<p>$m^2$ (A)</p> Signup and view all the answers

Determine $\frac{dy}{dx}$ if $y = \tan^{-1}(\frac{4x}{1+5x^2}) + \cot^{-1}(\frac{3-2x}{2+3x})$.

<p>$0$ (A)</p> Signup and view all the answers

Given the equation $xy = 1 + \log y$, and knowing that $k \frac{dy}{dx} + y^2 = 0$, what is the correct expression for $k$?

<p>$\frac{1}{xy - 1}$ (B)</p> Signup and view all the answers

If $x = 2at^2$ and $y = at^4$, calculate $\frac{d^2y}{dx^2}$ at $t = 2$.

<p>$\frac{1}{2a}$ (D)</p> Signup and view all the answers

If $y = e^{m \sin^{-1} x}$ and $(1 - x^2)(\frac{dy}{dx})^2 = Ay^2$, what is the value of $A$?

<p>$m^2$ (A)</p> Signup and view all the answers

Determine the value of $\frac{dy}{dx}$ for $y = \tan^{-1}(\frac{4x}{1+5x^2}) + \cot^{-1}(\frac{3-2x}{2+3x})$.

<p>$0$ (C)</p> Signup and view all the answers

For the equation $xy = 1 + \log y$, given $k \frac{dy}{dx} + y^2 = 0$, solve for k.

<p>$\frac{1}{xy - 1}$ (C)</p> Signup and view all the answers

Flashcards

Inverse Trigonometric Functions

A function is considered as an inverse trigonometric function when it reverses the operations of the trigonometric functions such as sine, cosine, tangent, cotangent, secant, and cosecant.

Derivatives of Implicit Functions

If xy = 1 + log y and k dy/dx + y² = 0, then k is

Parametric Differentiation

Given x = 2at², y = at⁴, then d²y/dx² at t = 2 is

Chain Rule and Implicit Relations

Given y = e^(msin⁻¹x) and (1 - x²)(dy/dx)² = Ay², then A =

Signup and view all the flashcards

Study Notes

  • y = tan⁻¹(4x/(1+5x²)) + cot⁻¹((3-2x)/(2+3x)), then dy/dx = 0
  • If xy = 1 + log y and k dy/dx + y² = 0, then k is 1/(xy-1)
  • If x = 2at², y = at⁴, then d²y/dx² at t = 2 is 1/(2a)
  • If y = e^(msin⁻¹x) and (1-x²)(dy/dx)² = Ay², then A = m²

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Differential Calculus Quiz
9 questions
Differential Calculus Concepts Quiz
5 questions
Calculus: Differential Calculus and Derivatives
25 questions
Use Quizgecko on...
Browser
Browser