Differential Calculus Overview
9 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the gradient ∇𝜙 of the temperature distribution 𝜙 at the point (1, -2, -1)?

∇𝜙 = (6, -12, 4)

What are the divergence and curl of the vector field 𝑽 = (𝒙𝒚𝒛)𝒊 + (𝟑𝒙𝟐 𝒚)𝒋 + (𝒙𝒛𝟐 − 𝒚𝟐 𝒛)𝒌 at the point (2, -1, 1)?

Divergence = 6, Curl = (0, 0, 0)

What is the relation between 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥/𝑦?

𝑣 = 𝑢/𝑦

How do you estimate the value of the function 𝑓(𝑥, 𝑦) = 𝑦𝑥 when 𝑥 = 1.03 and 𝑦 = 1.02 using Taylor series?

<p>Estimate value = approximately 1.0506</p> Signup and view all the answers

If 𝑓(𝑐𝑥 − 𝑎𝑧, 𝑐𝑦 − 𝑏𝑧) = 0, what is the relation between 𝑎, 𝑏, and 𝑐?

<p>𝑎 + 𝑏 = 𝑐</p> Signup and view all the answers

Show that if 𝑢 = 𝑥³ + 𝑦³ + 𝑧³ + 3𝑥𝑦𝑧, then ∂𝑢/∂𝑥 + ∂𝑢/∂𝑦 + ∂𝑢/∂𝑧 = 3𝑢.

<p>True</p> Signup and view all the answers

Verify that 𝑢 = tan^(-1)((𝑥 − 𝑦)) is a homogeneous function.

<p>True</p> Signup and view all the answers

Evaluate ∂𝑢/∂𝑥 + 𝑦 ∂𝑢/∂𝑦 for 𝑢 = tan^(-1)((𝑥 − 𝑦)).

<p>1</p> Signup and view all the answers

Evaluate 𝑥² + 𝑦² + 𝑧 ∂²𝑢/∂𝑥∂𝑦 + ∂²𝑢/∂𝑦∂𝑧 for 𝑢 = tan^(-1)((𝑥 − 𝑦)).

<p>0</p> Signup and view all the answers

Study Notes

Differential Calculus Overview

  • Analyze temperature distribution within a composite material using the equation ( \phi = 3x^2y - y^3z^2 ).
  • Gradient ( \nabla \phi ) indicates the direction and rate of fastest increase of the temperature function.

Evaluating Gradient

  • Calculate ( \nabla \phi ) at the point (1, -2, -1) for the temperature distribution equation.

Vector Calculus

  • Given the vector ( \vec{V} = (xyz) \hat{i} + (3x^2y) \hat{j} + (xz^2 - y^2z) \hat{k} ).
  • Evaluate both divergence and curl of ( \vec{V} ) at the point (2, -1, 1) to analyze vector field properties.

Dependency of Variables

  • Establish the relationship between ( u = x + y ) and ( v = \frac{x - y}{x} ).
  • Demonstrate that ( u ) and ( v ) are dependent via their functional representation.

Taylor Series Expansion

  • Model function ( f(x, y) = yx ) to relate rate of growth ( x ) and scaling factor ( y ).
  • Use Taylor series expansion up to second-degree terms around the point (1, 1) for approximation when ( x = 1.03 ) and ( y = 1.02 ).

Homogeneous Functions

  • Given ( f(cx - az, cy - bz) = 0 ), prove ( a + b = c ) using the chain rule in multivariable calculus.

Partial Derivation Equality

  • Show ( \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 3u \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial u}{\partial z} ) where ( u = x^3 + y^3 + z^3 + 3xyz ).

Verification of Homogeneity

  • For ( u = \tan^{-1} \left( \frac{x - y}{2} \right) ), confirm ( u ) is a homogeneous function.
  • Evaluate ( \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y} ) and ( 2 \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial y^2} + z \cdot \frac{\partial u}{\partial z}^2 ) for properties of partial derivatives.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

Description

This quiz covers key concepts in differential calculus, focusing on temperature distribution, gradient evaluations, vector calculus properties, and variable dependencies. Additionally, it explores Taylor series expansions in relation to growth rates and scaling factors. Test your understanding through practical problem-solving questions.

More Like This

Differential Calculus Concepts Quiz
5 questions
Differential Calculus Concepts Quiz
5 questions
Differential Calculus Challenge
3 questions
Optimization with Differential Calculus Quiz
12 questions
Use Quizgecko on...
Browser
Browser