Podcast
Questions and Answers
Resuelva la desigualdad $|\frac{2x-5}{2q}| \geq 1$. Exprese el conjunto solución en forma constructiva.
Resuelva la desigualdad $|\frac{2x-5}{2q}| \geq 1$. Exprese el conjunto solución en forma constructiva.
El conjunto solución en forma constructiva es $x \leq \frac{5}{2}q$ o $x \geq \frac{5}{2}q$.
Resuelva la desigualdad $|\frac{2x-5}{2q}| \geq 1$. Exprese el conjunto solución en la notación de intervalo.
Resuelva la desigualdad $|\frac{2x-5}{2q}| \geq 1$. Exprese el conjunto solución en la notación de intervalo.
El conjunto solución en la notación de intervalo es $(-\infty, \frac{5}{2}q] \cup [\frac{5}{2}q, \infty)$.
Resuelva la desigualdad $|\frac{2x-5}{2q}| \geq 1$. Trace la gráfica de la solución.
Resuelva la desigualdad $|\frac{2x-5}{2q}| \geq 1$. Trace la gráfica de la solución.
La gráfica de la solución es una línea vertical en $x = \frac{5}{2}q$ con puntos sólidos en la intersección.
¿Cuál de las siguientes opciones representa correctamente la solución constructiva de la desigualdad $|rac{2x-5}{2q}|
ot
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
egmedspace
eq 1$?
¿Cuál de las siguientes opciones representa correctamente la solución constructiva de la desigualdad $|rac{2x-5}{2q}| ot egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace egmedspace eq 1$?
Signup and view all the answers
¿Cuál de las siguientes opciones representa correctamente la notación de intervalo para la solución de la desigualdad $|rac{2x-5}{2q}|
ot
eq 1$?
¿Cuál de las siguientes opciones representa correctamente la notación de intervalo para la solución de la desigualdad $|rac{2x-5}{2q}| ot eq 1$?
Signup and view all the answers
¿Cuál de las siguientes opciones describe correctamente la gráfica de la solución de la desigualdad $|rac{2x-5}{2q}|
ot
eq 1$?
¿Cuál de las siguientes opciones describe correctamente la gráfica de la solución de la desigualdad $|rac{2x-5}{2q}| ot eq 1$?
Signup and view all the answers
Study Notes
Desigualdad Absoluta
- La desigualdad a resolver es ( |\frac{2x-5}{2q}| \geq 1 ).
- Implica que la expresión dentro del valor absoluto puede ser mayor o igual a 1 o menor o igual a -1.
Resolución de la Desigualdad
- Se separa en dos casos:
- Caso 1: ( \frac{2x-5}{2q} \geq 1 )
- Caso 2: ( \frac{2x-5}{2q} \leq -1 )
Caso 1: ( \frac{2x-5}{2q} \geq 1 )
-
Multiplicando ambos lados por ( 2q ) (asumiendo ( q > 0 )):
- ( 2x - 5 \geq 2q )
- ( 2x \geq 2q + 5 )
- ( x \geq q + \frac{5}{2} )
-
Si ( q < 0 ) el signo se invierte:
- ( 2x - 5 \leq 2q )
- ( 2x \leq 2q + 5 )
- ( x \leq q + \frac{5}{2} )
Caso 2: ( \frac{2x-5}{2q} \leq -1 )
-
Multiplicando por ( 2q ) (asumiendo ( q > 0 )):
- ( 2x - 5 \leq -2q )
- ( 2x \leq -2q + 5 )
- ( x \leq -q + \frac{5}{2} )
-
Si ( q < 0 ):
- ( 2x - 5 \geq -2q )
- ( 2x \geq -2q + 5 )
- ( x \geq -q + \frac{5}{2} )
Conjuntos Solución
-
Para ( q > 0 ):
- ( x \geq q + \frac{5}{2} ) o ( x \leq -q + \frac{5}{2} )
- Solución en notación de intervalos: ( (-\infty, -q + \frac{5}{2}] \cup [q + \frac{5}{2}, \infty) )
-
Para ( q < 0 ):
- ( x \leq q + \frac{5}{2} ) o ( x \geq -q + \frac{5}{2} )
- Solución en notación de intervalos: ( (-\infty, q + \frac{5}{2}] \cup [-q + \frac{5}{2}, \infty) )
Gráfica de la Solución
- Representar los intervalos en una recta numérica.
- Marcar los puntos críticos ( q + \frac{5}{2} ) y ( -q + \frac{5}{2} ).
- Sombrear las regiones correspondientes a las soluciones en función de los valores de ( q ).
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Practica resolviendo desigualdades con valor absoluto. Encuentra el conjunto solución en forma constructiva y de intervalo, y representa la desigualdad en forma gráfica. Fortalece tus habilidades matemáticas con este desafío.