Podcast
Questions and Answers
What is the value of $\arccos(0)$?
What is the value of $\arccos(0)$?
- $2\pi$
- $0$
- $\pi$
- $\frac{\pi}{2}$ (correct)
If $\tan(x) = \sqrt{3}$, what is the value of $x$ in the interval $[0, 2\pi]$?
If $\tan(x) = \sqrt{3}$, what is the value of $x$ in the interval $[0, 2\pi]$?
- $\frac{5\pi}{6}$ (correct)
- $\frac{\pi}{3}$
- $\frac{2\pi}{3}$
- $\frac{\pi}{6}$
What is the value of $\sin(\arccos(-\frac{1}{2}))$?
What is the value of $\sin(\arccos(-\frac{1}{2}))$?
- $-\frac{\sqrt{3}}{2}$
- $-\frac{1}{2}$
- $-1$
- $\frac{1}{2}$ (correct)
Which of the following is equivalent to $2 ext{arccot}(3)$?
Which of the following is equivalent to $2 ext{arccot}(3)$?
If $ ext{arcsin}(x) = rac{ heta}{4}$, what is the value of $ an( heta)$?
If $ ext{arcsin}(x) = rac{ heta}{4}$, what is the value of $ an( heta)$?
If $ an( ext{arccos}(x)) = 2$, what is the value of $x$?
If $ an( ext{arccos}(x)) = 2$, what is the value of $x$?
Flashcards
arccos(0) value
arccos(0) value
The angle whose cosine is 0.
tan(x) = √3, x in [0, 2π]
tan(x) = √3, x in [0, 2π]
Find the angle x in the interval [0, 2π] where the tangent is √3.
sin(arccos(-1/2))
sin(arccos(-1/2))
Calculate the sine of the angle whose cosine is -1/2.
2 arccot(3)
2 arccot(3)
Signup and view all the flashcards
arcsin(x) = θ/4, find tan(θ)
arcsin(x) = θ/4, find tan(θ)
Signup and view all the flashcards
tan(arccos(x)) = 2, find x
tan(arccos(x)) = 2, find x
Signup and view all the flashcards
Study Notes
Trigonometric Functions and Inverse Trigonometric Functions
- The value of arccos(0) is π/2.
- If tan(x) = √3, then x = π/3 in the interval [0, 2π].
- The value of sin(arccos(-1/2)) is 1/2.
- The equivalent of 2arccot(3) is 2Ï€/3.
- If arcsin(x) = π/4, then tan(π/4) is 1.
- If tan(arccos(x)) = 2, then x = 1/√5.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.