Podcast
Questions and Answers
What is the equation of the tangent plane to the surface $x^2 + 2y^2 + 3z^2 = 12$ at the point $(1, 2, -1)$?
What is the equation of the tangent plane to the surface $x^2 + 2y^2 + 3z^2 = 12$ at the point $(1, 2, -1)$?
- $2x + 4y + 3z = 0$
- $2x + 8y - 3z = 0$
- $2x + 4y - 6z = 0$
- $x + 4y - 3z = 0$ (correct)
Which of the following represents the Jacobian of the equations $u=x ext{ sin } y$ and $v=y ext{ cos } x$?
Which of the following represents the Jacobian of the equations $u=x ext{ sin } y$ and $v=y ext{ cos } x$?
- $rac{ ext{det}}{1}$
- $ ext{det} egin{vmatrix} rac{ ext{d}u}{ ext{d}x} & rac{ ext{d}u}{ ext{d}y} \ rac{ ext{d}v}{ ext{d}x} & rac{ ext{d}v}{ ext{d}y} \\ ext{sin } y & -y ext{ sin } y ext{ cos } x \\ y ext{ cos } x & -x ext{ sin } x ext{cos } y \\ ext{cos } y ext{cos } y \end{vmatrix}$ (correct)
- $ ext{sin}^2 y ext{cos} x$
- $ ext{det} egin{vmatrix} ext{cos} y & 0 \ 0 & -x ext{sin} x \ ext{sin} x & 0 \\ 0 & y ext{cos } y \\ 1 & 1 \\ 1 & -1 \\ ext{cos } (xy) & ext{sin } (xy) \ ext{ sin } y & 0 \\ ext{cos} y & 0 \\ ext{sin} x & 0 \\ ext{cos } y & ext{cos } y \ ext{cot } y & ext{cos } x \ ext{sin } x & ext{sin } y \\ ext{cos } y & - ext{sin } x \ ext{sin } y & ext{sin } x \\ ext{cot } y & 0 \\ ext{cos} y & 0 \\ - ext{cot } x & - ext{sin} y \ ext{sin } x & 0 \\ - ext{sin } y & - ext{sin} x \\ ext{cot } y & - ext{cos } y \\ ext{sin } y & - ext{sin} x \ ext{cos } y & 0 \\ 0 & 0 \ 0 & 0 \\ - ext{cos } x & ext{sin } y \\ - ext{sin } y & - ext{sin} y \\ ext{sin } x & 0 \ 0 & - ext{cot } x \ ext{cos } (xy) & 0 \ ext{sin } y & 0 ext{}}$
What method is used to find the maximum and minimum values of the function $f(x, y) = 2x + y$ on the circle $x^2 + y^2 = 1$?
What method is used to find the maximum and minimum values of the function $f(x, y) = 2x + y$ on the circle $x^2 + y^2 = 1$?
- Finite Difference Method
- Gradient Descent
- Newton's Method
- Lagrange Multipliers (correct)
What is the form of the pressure equation at any point $(x, y, z)$ in space?
What is the form of the pressure equation at any point $(x, y, z)$ in space?
At the point $(3, 4, 5)$, what is the general form of the tangent plane to the surface $x^2 + y^2 - 4z = 5$?
At the point $(3, 4, 5)$, what is the general form of the tangent plane to the surface $x^2 + y^2 - 4z = 5$?
Flashcards are hidden until you start studying
Study Notes
Tangent Planes and Normal Lines
- Find the equation of the tangent plane and normal line to a surface at a given point.
- The equation of the tangent plane to a surface is found by taking the gradient of the surface equation at that point and setting it equal to zero.
- For the surface $x^2 + y^2 - 4z = 5$ at point $(3,4,5)$:
- Find the gradient of the surface equation: $\nabla(x^2 + y^2 - 4z) = (2x, 2y, -4)$.
- Evaluate the gradient at the point $(3,4,5)$: $\nabla(3,4,5) = (6, 8, -4)$.
- The equation of the tangent plane is: $6(x - 3) + 8(y - 4) - 4(z - 5) = 0$.
- To find the equation of the normal line, use the gradient as the direction vector and the given point as the starting point.
Jacobian
- Calculate the Jacobian matrix for multivariable functions.
- The Jacobian matrix is a matrix of partial derivatives of a vector-valued function.
- For the function $u = x \sin y$, $v = y \cos x$:
- The Jacobian matrix is:
- $\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = \begin{pmatrix} \sin y & x \cos y \ -y \sin x & \cos x \end{pmatrix}$
- The Jacobian matrix is:
Lagrange Multipliers
- Find maximum and minimum values of a function subject to a constraint.
- The method of Lagrange multipliers is a technique for finding the maxima and minima of a function subject to one or more constraints.
- To find the maximum value of $f(x, y) = 2x +y$ on the circle $x^2 + y^2 = 1$:
- Construct the Lagrange function, $L(x, y, \lambda) = f(x,y) - \lambda g(x,y)$, where $g(x,y)$ is the constraint function.
- $\nabla L = (0, 0, 0)$
- The system of equations to solve is:
- $2 - 2\lambda x = 0$
- $1 - 2\lambda y = 0$
- $x^2 + y^2 = 1$
- From the first two equations, $\lambda = \frac{1}{x}$ and $\lambda = \frac{1}{2y}$, which implies $x = 2y$.
- Substitute $x = 2y$ into the constraint equation to get $y^2 = \frac{1}{5}$.
- Substitute $y = \pm \sqrt{\frac{1}{5}}$ into the constraint equation to find $x$.
- Evaluate $f(x,y)$ at the critical points to find the maximum and minimum values.
Optimization problems in 3D Space
- Find the maximum or minimum value of a function in 3D space subject to a constraint.
- For example, find the highest pressure on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$ given the pressure at any point $(x,y,z)$ is $P = 400xyz^2$.
- Use the method of Lagrange multipliers, similar to the previous example.
- Construct the Lagrange function and solve for the critical points.
- Evaluate the pressure function at these critical points to find the maximum pressure.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.