Podcast
Questions and Answers
Apa yang dimaksud dengan Barisan Aritmatika?
Apa yang dimaksud dengan Barisan Aritmatika?
Rumus jumlah N suku pertama dalam barisan aritmatika adalah $S_n = n imes a$.
Rumus jumlah N suku pertama dalam barisan aritmatika adalah $S_n = n imes a$.
False
Tuliskan rumus suku ke-n dalam barisan aritmatika.
Tuliskan rumus suku ke-n dalam barisan aritmatika.
$a_n = a + (n-1)d$
Dalam barisan aritmatika, jika suku pertama adalah 5 dan beda adalah 3, suku ketiga dapat dihitung menggunakan rumus dan hasilnya adalah _____.
Dalam barisan aritmatika, jika suku pertama adalah 5 dan beda adalah 3, suku ketiga dapat dihitung menggunakan rumus dan hasilnya adalah _____.
Signup and view all the answers
Cocokkan entre barisan aritmatika dan deret geometri dengan ciri khas masing-masing:
Cocokkan entre barisan aritmatika dan deret geometri dengan ciri khas masing-masing:
Signup and view all the answers
Study Notes
Definisi Barisan Aritmatika
- Barisan Aritmatika adalah urutan bilangan di mana setiap suku setelah suku pertama diperoleh dengan menambah bilangan tetap (beda) pada suku sebelumnya.
- Notasi umum: ( a, a+d, a+2d, a+3d, \ldots )
- ( a ): suku pertama
- ( d ): beda (selisih antara dua suku berturut-turut)
Rumus Suku Ke-n
- Rumus suku ke-n dalam barisan aritmatika dapat dituliskan sebagai:
- ( a_n = a + (n-1)d )
- Di mana ( a_n ) adalah suku ke-n, ( n ) adalah nomor urut suku, ( a ) adalah suku pertama, dan ( d ) adalah beda.
Jumlah N Suku Pertama
- Rumus jumlah ( S_n ) dari N suku pertama dalam barisan aritmatika:
- ( S_n = \frac{n}{2} (2a + (n-1)d) )
- Alternatif: ( S_n = \frac{n}{2} (a + a_n) )
- Di mana ( S_n ) adalah jumlah N suku pertama, ( n ) adalah banyaknya suku, ( a ) adalah suku pertama, dan ( a_n ) adalah suku ke-n.
Perbandingan Dengan Deret Geometri
- Barisan Aritmatika: beda tetap antar suku.
- Deret Geometri: rasio tetap antar suku.
- Contoh:
- Barisan Aritmatika: 2, 5, 8, 11 (beda 3).
- Deret Geometri: 3, 6, 12, 24 (rasio 2).
- Aritmatika fokus pada penjumlahan, sedangkan geometri fokus pada perkalian.
Aplikasi Dalam Masalah Sehari-hari
- Menghitung total biaya yang meningkat setiap bulan.
- Menentukan jarak yang ditempuh jika kecepatan tetap bertambah.
- Menghitung waktu yang dibutuhkan untuk menyelesaikan tugas yang bertambah secara teratur.
- Pengaturan jadwal kegiatan dengan interval waktu tetap.
Definisi Barisan Aritmatika
- Barisan Aritmatika adalah urutan bilangan di mana setiap suku diperoleh dengan menambah bilangan tetap pada suku sebelumnya.
- Notasi umum barisan aritmatika: ( a, a+d, a+2d, a+3d, \ldots )
- ( a ) mewakili suku pertama.
- ( d ) adalah beda, yaitu selisih antara dua suku berturut-turut.
Rumus Suku Ke-n
- Rumus untuk menghitung suku ke-n dalam barisan aritmatika:
- ( a_n = a + (n-1)d )
- ( a_n ) adalah nilai suku ke-n, ( n ) adalah nomor urut suku, ( a ) adalah suku pertama, dan ( d ) adalah beda antar suku.
Jumlah N Suku Pertama
- Rumus untuk menentukan jumlah ( S_n ) dari N suku pertama:
- ( S_n = \frac{n}{2} (2a + (n-1)d) )
- Alternatif lainnya: ( S_n = \frac{n}{2} (a + a_n) )
- ( S_n ) menunjukkan total nilai dari N suku pertama, ( n ) adalah jumlah suku yang dihitung, ( a ) adalah suku pertama, dan ( a_n ) adalah suku ke-n.
Perbandingan Dengan Deret Geometri
- Pada barisan aritmatika, terdapat beda tetap antar suku; sedangkan pada deret geometri, ada rasio tetap.
- Contoh barisan aritmatika: 2, 5, 8, 11 (beda 3).
- Contoh deret geometri: 3, 6, 12, 24 (rasio 2).
- Fokus barisan aritmatika adalah penjumlahan, sementara deret geometri berfokus pada perkalian.
Aplikasi Dalam Masalah Sehari-hari
- Barisan aritmatika berguna untuk menghitung total biaya yang meningkat setiap bulan.
- Memungkinkan perhitungan jarak yang ditempuh dengan kecepatan yang bertambah secara teratur.
- Berdampak pada penghitungan waktu yang diperlukan untuk menyelesaikan tugas yang meningkat secara berkala.
- Digunakan dalam pengaturan jadwal kegiatan dengan interval waktu tetap.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Kuiz ini membahas tentang definisi dan rumus-rumus penting dalam barisan aritmatika. Anda akan belajar mengenai cara menemukan suku ke-n dan jumlah suku pertama dalam barisan aritmatika. Selain itu, ada perbandingan mendasar dengan deret geometri.