أسيمبتوتات وفروع الدالة
16 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

ما هو الشرط اللازم لتحديد وجود asymptote أفقي؟

  • إذا كانت النهاية عند اللانهاية السالبة مختلفة عن اللانهاية الموجبة.
  • إذا كانت النهاية عند قيمة معينة تساوي اللانهاية.
  • إذا كانت $ ext{lim}_{x o ext{∞}} f(x) = a$ و $ ext{lim}_{x o - ext{∞}} f(x) = a$. (correct)
  • إذا كانت القيمة النهائية تساوي صفر.
  • ما هو التعبير الرياضي للمستقيم asymptote المنحدر؟

  • $y = mx + c$ حيث $m$ هو الميل.
  • $y = b$ حيث $b$ هو ثابت.
  • $y = ax + b$ حيث $a$ و $b$ أعداد حقيقية. (correct)
  • $y = ax^2 + b$ مع $a eq 0$.
  • متى يكون للوظيفة asymptote عمودي؟

  • عندما $ ext{lim}_{x o a} f(x) = ext{∞}$ أو $ ext{lim}_{x o a} f(x) = - ext{∞}$. (correct)
  • عندما $ ext{lim}_{x o ext{∞}} f(x) = a$.
  • عندما $ ext{lim}_{x o a} f(x) = 0$.
  • عندما تقترب من $x = a$ من الجانب الأيمن فقط.
  • ما الشرط اللازم لفتح القطع الناقص إلى اليمين؟

    <p>إذا كانت $ ext{lim}_{x o ext{∞}} [f(x) - ax] = ext{∞}$ و $a eq 0$. (C)</p> Signup and view all the answers

    ما التعبير الرياضي للـ asymptote الأفقي؟

    <p>$y = a$ حيث تمثل $a$ قيمة ثابتة. (D)</p> Signup and view all the answers

    ما هو سلوك الدالة عند اقتراب x من اللانهاية السالبة إذا كانت $ ext{lim}_{x o - ext{∞}} [f(x) - ax] = ext{∞}$؟

    <p>تفتح في اتجاه اليسار. (A)</p> Signup and view all the answers

    ما هو تأثير $ ext{lim}_{x o ext{∞}} [f(x) - 0] = 0$ على شكل الدالة؟

    <p>فتح القطع الناقص بشكل أفقي. (C)</p> Signup and view all the answers

    ما هو الشرط اللازم لفتح القطع الناقص حول المحور العمودي؟

    <p>إذا كانت $ ext{lim}_{x o ext{∞}} [f(x) - 0] = 0$. (C)</p> Signup and view all the answers

    Quelle condition doit être vérifiée pour qu'une fonction ait une asymptote horizontale ?

    <p>La fonction a une asymptote horizontale si $ ext{lim}<em>{x o ext{∞}} f(x) = a$ et $ ext{lim}</em>{x o - ext{∞}} f(x) = a$.</p> Signup and view all the answers

    Qu'est-ce qui indique la présence d'une asymptote verticale ?

    <p>Une asymptote verticale existe si $ ext{lim}<em>{x o a} f(x) = ext{∞}$ ou $ ext{lim}</em>{x o a} f(x) = - ext{∞}$.</p> Signup and view all the answers

    Quand une fonction possède-t-elle une asymptote oblique ?

    <p>Une asymptote oblique est présente si $ ext{lim}<em>{x o ext{∞}} [f(x) - (ax + b)] = 0$ et $ ext{lim}</em>{x o - ext{∞}} [f(x) - (ax + b)] = 0$.</p> Signup and view all the answers

    Qu'indique un comportement de la fonction où $ ext{lim}_{x o ext{∞}} [f(x) - ax] = ext{∞}$ ?

    <p>Cela indique que la fonction a une parabole qui ouvre vers la droite avec l'équation $y = ax$ lorsque x approche l'infini.</p> Signup and view all the answers

    Que signifie une asymptote lorsque $ ext{lim}_{x o - ext{∞}} [f(x) - ax] = ext{∞}$ ?

    <p>Cela signifie que la fonction possède une parabole qui ouvre vers la gauche avec l'équation $y = ax$ lorsque x approche de l'infini négatif.</p> Signup and view all the answers

    Quelle est la condition pour une parabole qui ouvre vers l'axe horizontal ?

    <p>Une parabole s'ouvrant vers l'axe horizontal se produit si $ ext{lim}_{x o ext{∞}} [f(x) - 0] = 0$.</p> Signup and view all the answers

    Dans quel cas une parabole ouvre-t-elle vers l'axe vertical ?

    <p>Si $ ext{lim}_{x o ext{∞}} [f(x) - 0] = 0$, la fonction a une parabole qui ouvre vers l'axe vertical.</p> Signup and view all the answers

    Pourquoi est-il important de vérifier les limites des deux côtés d'un point pour une asymptote verticale ?

    <p>Il est important de vérifier les limites des deux côtés pour assurer que la fonction s'approche de l'infini au point a, ce qui confirmera l'existence de l'asymptote.</p> Signup and view all the answers

    Flashcards

    Horizontal Asymptote

    A horizontal line that the function approaches as x approaches positive or negative infinity.

    Vertical Asymptote

    A vertical line that the function approaches, but never crosses, as x approaches a specific value.

    Slanted Asymptote

    A slanted line that a function approaches as x approaches positive or negative infinity.

    Parabola Opening to Right

    The function approaches a parabola opening to the right as x approaches positive infinity.

    Signup and view all the flashcards

    Parabola Opening to Left

    The function approaches a parabola opening to the left as x approaches negative infinity

    Signup and view all the flashcards

    Limit as x approaches infinity

    The value that a function approaches as x gets very large or very small.

    Signup and view all the flashcards

    Limit at a Vertical Asymptote

    Must be taken from both sides (left and right) to establish the nature of the Vertical Asymptote.

    Signup and view all the flashcards

    Function Behavior

    The analysis of how a function behaves at different values of x. This includes analyzing horizontal and vertical asymptotes, as well as branches based on limits.

    Signup and view all the flashcards

    Horizontal Asymptote

    A horizontal line y = a; a function approaches as x approaches positive or negative infinity

    Signup and view all the flashcards

    Vertical Asymptote

    A vertical line x = a; function approaches infinity or negative infinity as x approaches 'a' from both sides

    Signup and view all the flashcards

    Slanted Asymptote

    A slanted line y = ax + b; the function approaches as x approaches positive or negative infinity

    Signup and view all the flashcards

    Parabola Opening Right

    The function approaches a parabola that opens to the right as x approaches infinity

    Signup and view all the flashcards

    Parabola Opening Left

    The function approaches a parabola that opens to the left as x approaches negative infinity

    Signup and view all the flashcards

    Limit as x->∞

    The value a function approaches as x gets very large or very small

    Signup and view all the flashcards

    Limit at Vertical Asymptote

    Must be taken from both sides (left and right) to ensure the vertical asymptote exists

    Signup and view all the flashcards

    Function Analysis

    Examining limit behavior of function, including asymptotes (horizontal, vertical, slanted), and branch directions

    Signup and view all the flashcards

    Study Notes

    Asymptotes and Branches of a Function

    • Horizontal Asymptote: A function has a horizontal asymptote of equation y = a if the limit of the function as x approaches positive or negative infinity is a. (lim f(x) = a as x → ±∞)

    • Vertical Asymptote: A function has a vertical asymptote of equation x = a if the limit of the function as x approaches a from either side (left or right) is positive or negative infinity. (lim f(x) = ∞ or -∞ as x → a)

    • Oblique Asymptote: A function has an oblique asymptote if the limit of the function minus an equation of the form (ax+b) is a finite value as x approaches ±∞. The equation of the oblique asymptote is y = ax+b

    • Parabola Branches:

      • Parabola branch directed to the right (x-axis): The function will have a parabola branch directed to the right of the y-axis if the limit of (f(x) - ax) = b as x approaches ±∞. The equation of this branch is y = ax+b
      • Parabola branch directed towards to the x-axis (abscissa): If lim f(x)/x as x approaches ±∞ is zero, and f(x) is close to zero.
      • Parabola branch directed towards to the the y-axis (ordinate): If the limit of f(x)/x as x approaches ±∞ is zero, and f(x) is close to zero.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    يتناول هذا الاختبار مفاهيم الأسيمبتوتات الأفقية والرأسية والمائلة، بالإضافة إلى فروع الدوال البارابولية. ستساعدك الأسئلة على فهم كيفية تصرف الدوال عند الاقتراب من اللانهايات، وكيفية تحديد المعادلات المرتبطة بها.

    More Like This

    Asymptotes of Functions Graphs
    5 questions

    Asymptotes of Functions Graphs

    AccomplishedPersonification avatar
    AccomplishedPersonification
    Asymptotes in Functions Quiz
    8 questions
    Use Quizgecko on...
    Browser
    Browser