A.P. and Inverse Trigonometric Functions

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

Given an arithmetic progression $a_1, a_2, a_3, ..., a_n$ with a common difference d, what is the simplified form of the following expression?

$\tan^{-1}\left(\frac{d}{1 + a_1a_2}\right) + \tan^{-1}\left(\frac{d}{1 + a_2a_3}\right) + ... + \tan^{-1}\left(\frac{d}{1 + a_{n-1}a_n}\right)$

  • $\frac{(n-1)d}{1 + a_1a_n}$ (correct)
  • $\frac{nd}{1 + a_1a_n}$
  • $\frac{(n-1)d}{a_1 + a_n}$
  • $\frac{a_n - a_1}{a_n + a_1}$

If $\tan^{-1}y = \tan^{-1}x + \tan^{-1}\left(\frac{2x}{1 - x^2}\right)$ and $|x| < \frac{1}{\sqrt{3}}$, determine the value of y.

  • $\frac{3x + x^3}{1 - 3x^2}$ (correct)
  • $\frac{3x - x^3}{1 - 3x^2}$
  • $\frac{3x + x^3}{1 + 3x^2}$
  • $\frac{3x - x^3}{1 + 3x^2}$

Evaluate the expression: $\tan\left[2\tan^{-1}\left(\frac{1}{5}\right) - \frac{\pi}{4}\right]$

  • $-\frac{7}{17}$ (correct)
  • $\frac{17}{7}$
  • $\frac{7}{17}$
  • $-\frac{17}{7}$

Determine the value of $\sin\left[3\sin^{-1}\left(\frac{1}{5}\right)\right]$.

<p>$\frac{74}{125}$ (C)</p> Signup and view all the answers

Find the value of $\cot\left[\cos^{-1}\left(\frac{7}{25}\right)\right]$.

<p>$\frac{7}{24}$ (D)</p> Signup and view all the answers

If $\cos(2\sin^{-1}x) = \frac{1}{9}$, what are the possible values of x?

<p>$\frac{2}{3}, -\frac{2}{3}$ (B)</p> Signup and view all the answers

Given that $a_1, a_2, a_3, ..., a_n$ form an arithmetic progression with common difference d, how can $\tan\left[\tan^{-1}\left(\frac{d}{1 + a_1a_2}\right) + \tan^{-1}\left(\frac{d}{1 + a_2a_3}\right) + ... + \tan^{-1}\left(\frac{d}{1 + a_{n-1}a_n}\right)\right]$ be expressed?

<p>$\frac{(n-1)d}{1 + a_1a_n}$ (D)</p> Signup and view all the answers

If $\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left(\frac{2x}{1 - x^2}\right)$ and $|x| < \frac{1}{\sqrt{3}}$, which of the following is a valid expression for $y$?

<p>$y = \frac{x(3+x^2)}{1 - 3x^2}$ (B)</p> Signup and view all the answers

What is the exact value of $\tan\left(2 \arctan\left(\frac{1}{5}\right) - \frac{\pi}{4}\right)$?

<p>$-\frac{7}{17}$ (C)</p> Signup and view all the answers

Given $\sin\left[3\sin^{-1}\left(\frac{1}{5}\right)\right]$, determine the value of the expression.

<p>$\frac{74}{125}$ (A)</p> Signup and view all the answers

Determine the value of $\cot(\cos^{-1}(\frac{7}{25}))$.

<p>$\frac{7}{24}$ (A)</p> Signup and view all the answers

Given that $\cos(2\sin^{-1}(x)) = \frac{1}{9}$, find all possible values of x.

<p>$\pm \frac{2}{3}$ (D)</p> Signup and view all the answers

Consider an arithmetic progression $a_1, a_2, a_3, \dots, a_n$ with a common difference d. Which of the following expressions is equivalent to $\tan^{-1}\left(\frac{d}{1 + a_1 a_2}\right) + \tan^{-1}\left(\frac{d}{1 + a_2 a_3}\right) + \dots + \tan^{-1}\left(\frac{d}{1 + a_{n-1} a_n}\right)$?

<p>$\tan^{-1}(a_n) - \tan^{-1}(a_1)$ (C)</p> Signup and view all the answers

Let $\tan^{-1} y = \tan^{-1} x + \tan^{-1}\left(\frac{2x}{1 - x^2}\right)$, where $|x| < \frac{1}{\sqrt{3}}$. What is the value of $\tan y$?

<p>$\frac{3x - x^3}{1 - 3x^2}$ (C)</p> Signup and view all the answers

Calculate the exact value of $\tan\left[2\tan^{-1}\left(\frac{1}{5}\right) - \frac{\pi}{4}\right]$.

<p>$-\frac{7}{17}$ (C)</p> Signup and view all the answers

What is the value of $\sin\left[3\sin^{-1}\left(\frac{1}{5}\right)\right]$?

<p>$\frac{74}{125}$ (A)</p> Signup and view all the answers

Determine the value of $\cot\left[\cos^{-1}\left(\frac{7}{25}\right)\right]$.

<p>$\frac{7}{24}$ (B)</p> Signup and view all the answers

Find all the possible values of $x$ given the equation $\cos(2\sin^{-1}x) = \frac{1}{9}$.

<p>$x = \pm \frac{2}{3}$ (C)</p> Signup and view all the answers

Flashcards

A.P. Series Sum with tan⁻¹

If a₁, a₂, a₃, ..., aₙ is an A.P. with common difference d, the sum of the series tan⁻¹[d/(1+a₁a₂)] + tan⁻¹[d/(1+a₂a₃)] + ... + tan⁻¹[d/(1+aₙ₋₁aₙ)] equals (n-1)d / (a₁ + aₙ).

tan⁻¹ Addition Formula

If tan⁻¹y = tan⁻¹x + tan⁻¹(2x/(1-x²)), then y = (3x - x³) / (1 - 3x²) where |x| < 1/√3.

tan(2tan⁻¹(1/5) - π/4)

The value of tan[2tan⁻¹(1/5) - π/4] is -7/17

sin(3sin⁻¹(1/5)) Value

The value of sin[3sin⁻¹(1/5)] is 71/125.

Signup and view all the flashcards

cos(2sin⁻¹x) = 1/9, find x

If cos(2sin⁻¹x) = 1/9, then x = ±2/3.

Signup and view all the flashcards

Study Notes

  • If a₁, a₂, a₃, ..., aₙ is an arithmetic progression (A.P.) with common difference d, then:

    • tan[tan⁻¹(d / (1 + a₁a₂)) + tan⁻¹(d / (1 + a₂a₃)) + ... + tan⁻¹(d / (1 + aₙ₋₁aₙ))] = (aₙ - a₁) / (1 + a₁aₙ)
  • If tan⁻¹y = tan⁻¹x + tan⁻¹(2x / (1 - x²)), where |x| < 1/√3, then a value of y is (3x - x³) / (1 - 3x²)

  • tan[2tan⁻¹(1/5) - π/4] = -7/17

  • sin[3sin⁻¹(1/5)] = 74/125

  • cot[cos⁻¹(7/25)] = 24/7

  • If cos(2sin⁻¹x) = 1/9, then x = ±2/3

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Use Quizgecko on...
Browser
Browser