Anisotropic Spatial Correlation and Attribute Maps
46 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Explaining the basic concepts of ______

geostatistics

One of the fundamental expectations in ______ is that the interpolated values should tend toward the known values

interpolation

Comparing estimation and ______ simulations

stochastic

Calculating the average value and Root Mean Square deviation offers a straightforward approach to estimate an unknown parameter value and understand ______

<p>uncertainty</p> Signup and view all the answers

In many real-world scenarios, there may not be an exact functional relationship between a parameter of interest and the observed data, in such cases, a statistical approach is used to estimate the unknown values of the parameter based on the available ______

<p>data</p> Signup and view all the answers

A geostatistical estimation problem typically involves estimating or predicting the spatial distribution of a variable of interest over a ______ area

<p>geographic</p> Signup and view all the answers

Kriging is a method used for spatial ____________ or prediction.

<p>interpolation</p> Signup and view all the answers

The weights assigned to each known value in Kriging are determined based on the spatial ____________ between locations.

<p>correlation</p> Signup and view all the answers

The variogram is a measure of spatial variability that quantifies the average squared difference between pairs of data points as a function of their ____________ distance.

<p>separation</p> Signup and view all the answers

The range parameter in variogram models defines the distance beyond which data points are considered to be ____________ or independent.

<p>uncorrelated</p> Signup and view all the answers

The sill parameter represents the maximum variability or variance in the data, known as the ____________ value of the variogram.

<p>asymptotic</p> Signup and view all the answers

The nugget effect characterizes the variance of the random spatial noise component at very small spatial scales, also known as ____________ variation.

<p>discontinuous</p> Signup and view all the answers

To account for directional anisotropy, variogram models can be specified with an additional parameter: the ____________.

<p>azimuth</p> Signup and view all the answers

Anisotropic variogram models require specifying maximum and minimum Range values to address directional ____________.

<p>anisotropy</p> Signup and view all the answers

The difference in overall character between Exponential and Gaussian variograms can be observed in both section view and in ____________ view.

<p>map</p> Signup and view all the answers

The smoothness of the variogram result is determined by the slope of the variogram near the ____________.

<p>origin</p> Signup and view all the answers

Bayes' theorem combines the likelihood function with ________ probabilities to obtain the posterior distribution

<p>prior</p> Signup and view all the answers

The posterior distribution represents the updated beliefs about the target parameter Y given both the ________ information and the observed values of Z

<p>prior</p> Signup and view all the answers

In Bayesian inference, the final posterior probabilities are influenced by both the likelihood function and the ________ probabilities

<p>prior</p> Signup and view all the answers

The likelihood function quantifies the evidence provided by the observed ________

<p>data</p> Signup and view all the answers

The prior probability represents our beliefs or knowledge about the parameter before observing any ________

<p>data</p> Signup and view all the answers

In geostatistical modeling, the probability distribution of the target parameter Y at a specific location conditioned by its observed values at other points serves as the ________ model

<p>a-priori</p> Signup and view all the answers

Estimation methods in geostatistics include techniques like ________

<p>kriging</p> Signup and view all the answers

Kriging not only provides estimates of the mean values of spatial variables at unsampled locations but also estimates the associated variance or ________

<p>standard deviation</p> Signup and view all the answers

The posterior distribution combines information from both the likelihood function and the ________ probabilities

<p>prior</p> Signup and view all the answers

Bayes' theorem can be used to update the prior distribution to obtain the ________ distribution

<p>posterior</p> Signup and view all the answers

The behavior of this attribute is more predictable along the ______ direction

<p>inline</p> Signup and view all the answers

In the Kriging model, weights for datapoints from the ______ direction will be higher

<p>inline</p> Signup and view all the answers

The Kriging method can be interpreted from a ______ perspective

<p>Bayesian</p> Signup and view all the answers

Within this probabilistic framework, the unknown interpolated parameter Y(x) is considered a ______ field

<p>random</p> Signup and view all the answers

Values of this field at each point can be characterized by some probability distribution with its own ______

<p>parameters</p> Signup and view all the answers

In the Kriging method, it is assumed that these distributions are ______

<p>Gaussian</p> Signup and view all the answers

At locations far from known data points, the distributions have larger ______

<p>variance</p> Signup and view all the answers

Integrating additional information helps narrow the probability distribution for the estimated values and reduce ______

<p>uncertainty</p> Signup and view all the answers

Likelihood functions are used to assess how well a particular statistical model explains the observed ______

<p>data</p> Signup and view all the answers

The likelihood function represents the probability of observing the given data under different possible values of the model ______

<p>parameters</p> Signup and view all the answers

Unlike estimation, which provides point estimates of spatial variables, simulation provides multiple possible scenarios or realizations of the whole model, capturing both the spatial variability and the ______.

<p>uncertainty</p> Signup and view all the answers

Stochastic simulation techniques in geostatistics are often computationally demanding, especially when they are applied to 3D modeling ______.

<p>problems</p> Signup and view all the answers

Sequential Gaussian Simulation methods generate multiple realizations of the spatial variable that honor the observed data and spatial correlation ______.

<p>structure</p> Signup and view all the answers

Geostatistical inversion combines these two approaches to produce many of the benefits that these techniques produce ______.

<p>individually</p> Signup and view all the answers

A geostatistical estimation problem typically involves predicting the spatial or vertical distribution of a variable of ______.

<p>interest</p> Signup and view all the answers

Variograms define spatial variability and quantifies the difference between pairs of data points as a function of their separation ______.

<p>distance</p> Signup and view all the answers

In the subsurface modeling Bayesian methods provide a framework for updating prior beliefs based on observed data, leading to posterior distributions that represent our updated understanding of the subsurface ______.

<p>system</p> Signup and view all the answers

Estimation methods in geostatistics focus on estimating the most probable values of spatial parameters or variables at unobserved ______.

<p>locations</p> Signup and view all the answers

The main motivations for geostatistical inversion are to surpass seismic resolution limitations to resolve fine-scale reservoirs, and to tightly integrate multi-scale geological, petrophysical, and seismic data into a consistent 3D model of the ______.

<p>subsurface</p> Signup and view all the answers

The stochastic simulation approach focuses on generating multiple realizations of spatial variables that are consistent with the observed data and the underlying spatial ______.

<p>structure</p> Signup and view all the answers

More Like This

Use Quizgecko on...
Browser
Browser