التفكير الناقد وتخطيط المنحنيات
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

نشتق الدالة لنجد النقاط ______

الحرجة

الاشتقاق الأول للدالة هو: ______ = 3x^2 - 6x - 9

y'

النقاط الحرجة هي: (-1, -5) و ______

(3, -27)

الدالة تزيد على الفترات [-∞, -1) و ______

<p>(3, ∞)</p> Signup and view all the answers

على الفترة (-1, 3) فإن الدالة ______

<p>تناقص</p> Signup and view all the answers

Flashcards

النقط الحرجة

النقط الحرجة هي النقاط التي يكون عندها مشتق الدالة مساوياً للصفر أو غير معرف.

كيفية إيجاد النقط الحرجة

لإيجاد النقط الحرجة للدالة، نحتاج إلى حساب مشتق الدالة وجعله مساوياً للصفر ثم حل المعادلة.

التزايد والتناقص

إذا كان مشتق الدالة موجبًا في فترة معينة، فإن الدالة تتزايد في تلك الفترة. وإذا كان مشتق الدالة سالبًا، فإن الدالة تتناقص في تلك الفترة.

تحليل فترات التزايد والتناقص

نستخدم النقط الحرجة لتقسيم مجال الدالة إلى فترات نختار قيمة من كل فترة ونعوضها في مشتق الدالة ثم نقوم بتحديد إشارة مشتق الدالة.

Signup and view all the flashcards

رسم منحنى الدالة

رسم منحنى الدالة هو عملية تمثيل معادلة رياضية بخط على محاور إحداثيات.

Signup and view all the flashcards

Study Notes

Critical Points and Curve Sketching

  • Critical points are found by setting the derivative of a function equal to zero.
  • The given function is y = x³ - 3x² - 9x.
  • The derivative is y' = 3x² - 6x - 9.
  • Setting y' = 0 gives 3x² - 6x - 9 = 0.
  • Simplifying the equation gives x² - 2x - 3 = 0.
  • Factoring the equation gives (x - 3)(x + 1) = 0.
  • The solutions are x = 3 and x = -1.
  • These are the critical points.

Calculating y-values

  • Substituting x = 3 into the original function gives y = (3)³ - 3(3)² - 9(3) = 27 - 27 - 27 = -27.
  • Substituting x = -1 into the original function gives y = (-1)³ - 3(-1)² - 9(-1) = -1 - 3 + 9 = 5.
  • The critical points are (3, -27) and (-1, 5).

Increasing/Decreasing Intervals

  • To determine where the function is increasing or decreasing, test values in the intervals defined by the critical points.
  • Test values from (-∞, -1): Choose x = -2. y' = 3(-2)² - 6(-2) - 9 = 12 + 12 - 9 = 15 > 0, so the function is increasing.
  • Test values from (-1, 3): Choose x = 0. y' = 3(0)² - 6(0) - 9 = -9 < 0, so the function is decreasing.
  • Test values from (3, ∞): Choose x = 4. y' = 3(4)² - 6(4) - 9 = 48 - 24 - 9 = 15 > 0, so the function is increasing.

Summary

  • The function increases on (-∞, -1) and (3, ∞).
  • The function decreases on (-1, 3).

Additional Information (from the image)

  • The y-values are calculated at x = 1 and x = 2, providing additional points to help understand the shape of the curve.
  • A number line diagram was used to represent the intervals of increasing and decreasing behavior.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

هذا الاختبار يتناول النقاط الحرجة وتخطيط المنحنيات لدالة رياضية معينة. سيتم استكشاف كيفية تحديد النقاط الحرجة من خلال الاشتقاق وكيفية حساب القيم المقابلة لها. ينطوي الاختبار على معرفة كيفية تحديد الفترات المتزايدة والمتناقصة للدالة.

More Like This

Use Quizgecko on...
Browser
Browser