التفاضل والتكامل والإحصاء
5 Questions
2 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

ما هي مشتقة الدالة $x^3$؟

  • $x^2$
  • $3x^2$ (correct)
  • $3x^3$
  • $2x^3$
  • التكامل غير المحدود يعبر عن مجموعة الدوال المشتقة.

    True

    ما هو المتوسط في الإحصاء؟

    مجموع القيم مقسومًا على عددها.

    التوزيع الذي يتميز بالشكل الجرس هو ______.

    <p>التوزيع الطبيعي</p> Signup and view all the answers

    وفقًا للإحصاء، قم بمطابقة المقاييس مع تعريفاتها:

    <p>المتوسط = مجموع القيم مقسومًا على عددها الوسيط = القيمة التي تتوسط مجموعة مرتبة من البيانات المنوال = القيمة الأكثر تكرارًا في مجموعة البيانات التوزيع الثنائي = يمثل عدد النجاح في عدد ثابت من المحاولات</p> Signup and view all the answers

    Study Notes

    التفاضل والتكامل

    • التفاضل:

      • دراسة تغير الدوال بالنسبة للمتغيرات.
      • مشتقة الدالة تعبر عن معدل التغير.
      • القواعد الأساسية:
        • مشتقة ثابت = 0.
        • مشتقة x^n = n*x^(n-1).
        • قاعدة الجمع: (f + g)' = f' + g'.
        • قاعدة الضرب: (fg)' = f'g + fg'.
        • قاعدة القسمة: (f/g)' = (f'g - fg')/g^2.
    • التكامل:

      • عملية عكس التفاضل، تهدف إلى حساب المساحة تحت المنحنيات.
      • التكامل المحدود: يمثل المساحة بين منحنى الدالة والمحور.
      • التكامل غير المحدود يعبر عن مجموعة الدوال المشتقة.
      • قواعد التكامل:
        • ∫x^n dx = (1/(n+1)) * x^(n+1) + C (عند n ≠ -1).
        • ∫e^x dx = e^x + C.
        • ∫sin(x) dx = -cos(x) + C.
        • ∫cos(x) dx = sin(x) + C.

    الإحصاء

    • تعريف الإحصاء:

      • فرع من الرياضيات يهتم بجمع وتحليل وتفسير البيانات.
    • المقاييس الأساسية:

      • المتوسط: مجموع القيم مقسومًا على عددها.
      • الوسيط: القيمة التي تتوسط مجموعة مرتبة من البيانات.
      • المنوال: القيمة الأكثر تكرارًا في مجموعة البيانات.
    • التوزيعات:

      • التوزيع الطبيعي: شكل الجرس، يتميز بالتناظر حول المتوسط.
      • التوزيع الثنائي: يمثل عدد النجاح في عدد ثابت من المحاولات.
    • الاحتمالات:

      • قياس فرص حدوث حدث معين.
      • قاعدة الجمع: P(A أو B) = P(A) + P(B) - P(A و B).
      • قاعدة الضرب: P(A و B) = P(A) * P(B|A).
    • التحليل الإحصائي:

      • استخدام أدوات مثل الانحدار، تحليل التباين، واختبارات الفرضيات لاستخلاص النتائج من البيانات.

    التفاضل

    • التفاضل هو دراسة تغير الدوال وتأثير المتغيرات على هذا التغير.
    • المشتقة تعبر عن معدل التغير للدالة.
    • القواعد الأساسية للمشتقات:
      • مشتقة الثابت تساوي 0، مما يعني أن الثوابت لا تتغير.
      • قاعدة المشتقة للقوة: إذا كانت d = x^n، فإن مشتقتها هي n*x^(n-1).
      • قاعدة الجمع: مشتقة مجموع الدوال هي مجموع مشتقاتها، أي (f + g)' = f' + g'.
      • قاعدة الضرب: مشتقة حاصل ضرب دالتين تكون (fg)' = f'g + fg'.
      • قاعدة القسمة: مشتقة قسمة دالتين هي (f/g)' = (f'g - fg')/g^2.

    التكامل

    • التكامل هو العملية العكسية للتفاضل، حيث تهدف إلى حساب المساحات تحت المنحنيات.
    • التكامل المحدود يعبر عن المساحة بين منحنى الدالة والمحور x.
    • التكامل غير المحدود يمثل مجموعة الدوال المشتقة من دالة معينة.
    • قواعد التكامل الأساسية:
      • ∫x^n dx = (1/(n+1)) * x^(n+1) + C (حيث n ≠ -1).
      • ∫e^x dx = e^x + C.
      • ∫sin(x) dx = -cos(x) + C.
      • ∫cos(x) dx = sin(x) + C.

    الإحصاء

    • الإحصاء هو فرع رياضي يجمع بين جمع وتحليل وتفسير البيانات.
    • المقاييس الأساسية في الإحصاء:
      • المتوسط: يتم حسابه من خلال جمع القيم ثم القسمة على عددها.
      • الوسيط: القيمة التي تتوسط مجموعة مرتبة من البيانات، وتستخدم لتحديد المنتصف.
      • المنوال: القيمة الأكثر تكرارًا في مجموعة البيانات، مما يعكس التركيز.

    التوزيعات

    • التوزيع الطبيعي: يتميز بشكل جرس، حيث يكون متوازنًا ومتناظرًا حول المتوسط.
    • التوزيع الثنائي: يمثل عدد النجاحات في عدد ثابت من المحاولات، مثل رمي عملة.

    الاحتمالات

    • الاحتمالات تقيس فرصة حدوث حدث معين.
    • قاعدة الجمع: P(A أو B) = P(A) + P(B) - P(A و B)، تعبر عن احتمال حدوث واحد من حدثين.
    • قاعدة الضرب: P(A و B) = P(A) * P(B|A)، تستخدم لحساب احتمال حدوث حدثين معًا.

    التحليل الإحصائي

    • التحليل الإحصائي يتضمن استخدام أدوات مثل الانحدار، تحليل التباين، واختبارات الفرضيات، لاستخلاص الاستنتاجات من البيانات وتحليل النتائج.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    يستعرض هذا الاختبار مفاهيم التفاضل والتكامل، بما في ذلك المشتقات وقواعد التكامل. كما يتناول الإحصاء، مع التركيز على المقاييس الأساسية والتوزيعات. مثالي للطلاب الراغبين في تعزيز فهمهم للرياضيات.

    More Like This

    Calculus Integration Quiz
    0 questions

    Calculus Integration Quiz

    ConstructivePrudence avatar
    ConstructivePrudence
    Exploring Integration Techniques in Calculus
    12 questions
    Use Quizgecko on...
    Browser
    Browser