الهويات المثلثية لزوايا الجمع والطرح
9 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

أثبت أن tan (π/4 + θ) يساوي [1 + tan θ] / [1 - tan θ]

tan (π/4 + θ)= [tan π/4 + tan θ ]/ [1- tan π/4 tan θ] = [1 + tan θ]/[1 - tan θ]

أثبت أن sin (90°-θ) يساوي Cos θ.

sin(90°-θ)= cos θ.

أثبت أن Cos (π/2 + θ) يساوي - Sin θ .

Cos (π/2 + θ) = - Sin θ.

أثبت أن Sin( θ + π) يساوي - Sin θ .

<p>Sin (θ + π) = Sin θ Cos π + Cos θ Sin π= Sin θ (-1)+ Cos θ (0) = - Sin θ.</p> Signup and view all the answers

أثبت أنّ [sin A + tan θ cos A]/[cos A - tan θ Sin A] يساوي tan(A + θ).

<p>[sin A + tan θ cos A]/[cos A - tan θ Sin A] = [Sin A + Sin θ / Cos θ Cos A]/[Cos A - Sin θ / Cos θ Sin A] = [Sin A Cos θ+ Sin θ Cos A]/[Cos A Cos θ - Sin θ Sin A] = [Sin (A + θ)] / [Cos (A + θ)] = tan(A + θ)</p> Signup and view all the answers

بسّط العبارة sin (π/5 - θ) cos (π/5 + θ) - cos (π/5 - θ) sin (π/5 + θ) دون استخدام مفكوك المجموع أوّ الفرق.

<p>sin (π/5 - θ) cos (π/5 + θ) - cos (π/5 - θ) sin (π/5 + θ) = Sin( (π/5 - θ) - (π/5 + θ)) = Sin(-2θ) = -Sin 2θ.</p> Signup and view all the answers

أوجد قيمة d التي تُمثل المسافة بين النقطتين (Cos B, Sin B), (Cos A, Sin A) ، حيث أنّ A, B زاويتان في الوضع القياسي ؟

<p>d= √ [(Cos A - Cos B)² + (Sin A - Sin B)²] = √[Cos²A - 2Cos A Cos B + Cos²B + Sin²A - 2Sin A Sin B + Sin²B] = √[2 - 2(Cos A Cos B + Sin A Sin B)] = √[2 - 2Cos (A-B)]</p> Signup and view all the answers

ما القيمة الدقيقة للعبارة sin(60° + θ) cos θ - cos(60° + θ) sin θ ؟

<p>1/2</p> Signup and view all the answers

إذا كانت Cos θ + 0.3 = 0 و π < θ < 3π/2 ، فما القيمة الدقيقة لـ Cot θ؟

<p>Cos θ = -0.3 . Sin² θ = 1 - Cos² θ = 0.91 . بما أنّ θ في الربع الثالث ، فإن Sin θ = -√0.91= - √91/10. Cot θ = Cos θ/Sin θ= -0.3/-√91/10 = 3/√91 او 3√91/91 .</p> Signup and view all the answers

Study Notes

Trigonometric Identities for the Sum and Difference of Two Angles

  • Identities for tan(θ₁ ± θ₂):

    • tan(θ₁ + θ₂) = (tan θ₁ + tan θ₂)/(1 - tan θ₁ tan θ₂)
    • tan(θ₁ - θ₂) = (tan θ₁ - tan θ₂)/(1 + tan θ₁ tan θ₂)
  • Identity for sin(90°–θ):

    • sin(90° - θ) = cos θ
  • Identity for cos(θ₁ ± θ₂): (No specific formulas are provided, but information related to these may be found elsewhere in the given text)

  • Identity for sin(θ₁ ± θ₂): (No specific formulas are provided, but information related to these may be found elsewhere in the given text)

  • Identity for sin(θ+π):

    • sin(θ + π) = -sin θ
  • Identity for cos(½θ):

    • cos(½θ) = -sin θ (Note that this appears to be incomplete or incorrect form of the identity)
  • Identity for sin(θ+A):

    • sin(θ+A) = sin θ cos A + cos θ sin A
  • Relationship Between sin, cos, and tan:

    • sin A + tanθ cos A = tan(A+θ) / cos A - tanθsin A

Understanding Trigonometric Identities

  • Identities are used to prove others.
  • Identities are used to simplify expressions and solve problems.

Determining Trigonometric Values in Specific Quadrants of the Unit Circle.

  • Information on specific quadrants and angles. (Specific examples of these angles or quadrants are not included in the provided text.)

Applying Trigonometric Identities

  • Find the exact value of expressions like sin(60° + θ) cos θ - cos(60° + θ) sin θ
  • Given identities, show work to find exact values.
    • Example calculation: sin(60° + θ) cos θ - cos(60° + θ) sin θ = sin(60° - θ)

Special Values of Trigonometric Functions

  • Formulas may be required to find values given, such as cot θ and cos θ
  • Provide the formulas, cot θ and cos θ and work examples to show the values.

Solving for Angles using Trigonometric Functions

  • Determining an angle if cosθ + 0.3 = 0. (Values for other trigonometric functions may be involved).
  • Given an angle within a specific range, provide the necessary steps and values of trigonometric functions/identities involved. Example: If π < θ < 3π/2.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

استكشف الهويات المثلثية المرتبطة بجمع وطرح الزوايا. سيساعدك هذا الاختبار على فهم كيفية تطبيق هذه الهويات في مسائل الرياضيات المختلفة. مثالي للطلاب الذين يدرسون الهندسة أو الوظائف المثلثية.

More Like This

Use Quizgecko on...
Browser
Browser