Podcast
Questions and Answers
Quelle est la forme développée de A: $A = (x + 3)^2 - 5(x + 3)$ ?
Quelle est la forme développée de A: $A = (x + 3)^2 - 5(x + 3)$ ?
Quelle est la forme factorisée de A?
Quelle est la forme factorisée de A?
(x + 3)((x + 3) - 5)
L'équation $10x + 15y = 5(2x + 3y)$ est une simplification correcte.
L'équation $10x + 15y = 5(2x + 3y)$ est une simplification correcte.
True
Quel est le résultat de l'équation $(x - 2)^2 - (x - 2)(x + 4) + (x + 3)(x - 2)$?
Quel est le résultat de l'équation $(x - 2)^2 - (x - 2)(x + 4) + (x + 3)(x - 2)$?
Signup and view all the answers
Quelle est la valeur de $△$ dans l'équation $x^2 + 5x + 6$?
Quelle est la valeur de $△$ dans l'équation $x^2 + 5x + 6$?
Signup and view all the answers
Quel est le résultat de la simplification $2x^2 - 8x - 10$?
Quel est le résultat de la simplification $2x^2 - 8x - 10$?
Signup and view all the answers
Quelle est la forme factorisée de $15x^2 + 225x + 600$ ?
Quelle est la forme factorisée de $15x^2 + 225x + 600$ ?
Signup and view all the answers
Quelle est la simplification de l'expression suivante: $54a^2 xy / 54a^2 xy$?
Quelle est la simplification de l'expression suivante: $54a^2 xy / 54a^2 xy$?
Signup and view all the answers
Study Notes
Exercice 2.1
- L'expression A peut être développée en x² + 6x + 9 - 5x - 15 ou factorisée en (x + 3)((x + 3) - 5).
- L'expression x² + x - 6 peut être factorisée en (x + 3)(x - 2).
Exercice 2.2
- La factorisation d'expressions algébriques est démontrée à travers plusieurs exemples, y compris:
- 10x + 15y = 5(2x + 3y)
- xy + 4yz = y(x + 4z)
- a⁸b⁴x² = a³b³x²(ab - x²)
- 8x⁵ - 6x² = 2x²(4x³ - 3)
- 3a³b⁴ - 12a²b³ = 3a²b³(ab - 4)
- 6a²bc² - 15abc³ = 3abc²(2a - 5c)
- -30x⁴y³z² - 15x³y³z³ = -15x³y³z(2x + z²)
- 23x⁶y³ - 23x⁵y³ + 46x²y⁶ = 23x⁴y²(x² - x²y + 2y³)
- 7a²x³y - 21ax²y - 28x²y² = 7x²y(a²x - 3a - 4y²)
- 2a³b² + 8ab³ - 6ab² = 2ab(ab + 4b² - 3a)
- 3ab(bc)³ - ab(bc)² = ab(bc)²(3(bc) - 1) = ab³c²(3bc - 1)
- 4xⁿym + 2x²yⁿoz = 2xⁿym(2 + x²y²)
Exercice 2.3
- L'exercice demande de simplifier une expression impliquant des symboles mathématiques.
Exercice 2.4
- L'exercice utilise la factorisation par regroupement pour simplifier des expressions algébriques, y compris :
- (2a + 3b)(2x + y) + (3a + 5b)(2x + y) = (2x + y)(5a + 8b)
- 2(3 + x) - 3(3 + x) + 4(3 + x) = (3 + x)(2 - 3 + 4)
- 2a(a - b) - (a - b)² = (a - b)(2a - (a - b)) = (a - b)(2a - a + b) = (a - b)(a + b)
- (x - 3)(x + 1) - 2(x - 3) + 2 (x- 3)² = (x - 3)((x+1) - 2 + 2(x - 3)) = (x - 3)(x + 1 - 2 + 2x - 6) = (x - 3)(3x - 7)
- (x - 2)² - (x - 2)(x + 4) + (x + 3)(x - 2) = (x - 2)((x - 2) - (x + 4) + (x + 3)) = (x - 2)(x - 2 - x - 4 + x + 3) = (x - 2)(x - 3)
- x(x - 4)⁸ - (x - 4)⁷(2x + 1) = (x - 4)⁷(x(x - 4) - (2x + 1)) = (x - 4)⁷(x² - 4x - 2x - 1) = (x - 4)⁷(x² - 6x - 1)
- x(x - 7) - 5(7 - x) = x(x - 7) + 5(-7 + x) = x(x - 7) + 5(x - 7) = (x - 7)(x + 5)
- (x - 2y)(a - b) - (b - a)(2x + y) = (x - 2y)(a - b) + (-b + a)(2x + y) = (x - 2y)(a - b) + (a - b)(2x + y) = (a - b)((x - 2y) + (2x + y)) = (a - b)(3x - y)
- (4a - 2b)(2x - 3y) + (3y - 2x)(b - 2a) = (4a - 2b)(2x - 3y) - (-3y + 2x)(b - 2a) = (4a - 2b)(2x - 3y) - (2x - 3y)(b - 2a) = (2x - 3y)((4a - 2b) - (b - 2a)) = (2x - 3y)(4a - 2b - b + 2a) = (2x - 3y)(6a - 3b) = 3(2x - 3y)(2a - b)
- a²(x - 1)(a + b) + a³(1 - x) = a²(x - 1)(a + b) - a³(-1 + x) = a²(x - 1)(a + b) - a³(x - 1) = a²(x - 1)((a + b) - a) = a²(x - 1)b
Exercice 2.5
- L'exercice montre comment développer le carré d'une somme ou d'une différence, par exemple:
- (2x + y)² = 4x² + 4xy + y²
- (4x - 3y)² = 9y² - 24xy + 16x²
- (3ab²)² = 9a²b⁴
- (x - 4y)² = x² + 16y² - 8xy
- (x + 2y)² = x² + 4xy + 4y²
- ( x - 3)² = x² - 6x + 9
Exercice 2.6
- L'exercice porte sur la factorisation d'expressions algébriques à l'aide de différentes identités remarquables, y compris:
- 9x² - 12x + 4 = (3x - 2)²
- 16x² - 81 = (4x + 9)(4x - 9)
- x² - 1/4 = (x + 1/2)(x - 1/2)
- 8x³ - 12x² + 6x - 1 = (2x - 1)³
- 25x⁶ - 49 = (5x³ + 7)(5x³ - 7)
- 27x³ - 64 = (3x - 4)(9x² + 12x + 16)
- x³ - 9x = x(x² - 9) = x(x + 3)(x - 3)
- (3x - 1)² - (5x + 7)² = ((3x - 1) - (5x + 7))((3x - 1) + (5x + 7)) = (3x - 1 - 5x - 7)(3x - 1 + 5x + 7) = (-2x - 8)(8x + 6) = -2(x + 4)(4x + 3) = -4(x + 4)(4x + 3)
- -x³ + 9x² - 27x + 27 = (3 - x)³
- x⁸ - 1 = (x⁴ - 1)(x⁴ + 1) = (x² - 1)(x² + 1)(x⁴ + 1) = (x - 1)(x + 1)(x² + 1)(x⁴ + 1)
- 125x³ + 8y³ = (5x + 2y)(25x² - 10xy + 4y²)
- (x + 1)² - (2x - 1)² = ((x + 1) - (2x - 1))((x + 1) + (2x - 1)) = (x + 1 - 2x + 1)(x + 1 + 2x - 1) = (-x + 2)(3x) = 3x(2 - x)
- 8 - x²y³ = (2 - xy²)(4 + 2xy³ + x²y⁶)
- a²x⁶ - 25 = (ax³ + 5)(ax³ - 5)
- 12ax² - 36axy + 27ay² = 3a(4x² - 12xy + 9y²) = 3a(2x - 3y)²
Exercice 2.7
- L'exercice utilise la factorisation par regroupement pour simplifier des expressions algébriques, y compris:
- 4x³ + 4x² + 7x + 7 = 4x²(x + 1) + 7(x + 1) = (x + 1)(4x² + 7)
- a² + ac + ab + bc = a(a + c) + b(a + c) = (a + c)(a + b)
- x²(3x - 1) - 3x + 1 = x² (3x - 1) -(3x - 1) = (3x - 1)(x² - 1) = (3x - 1)(x + 1)(x - 1)
- 20xy + 4y - 10x - 2 = (20xy + 4y) - (10x + 2) = 4y(5x + 1) - 2(5x + 1) = (5x + 1)(4y - 2) = 2(5x + 1)(2y - 1)
- a³ + 3a²b + 3ab² + b³ - a - b = (a + b)³ - a - b = (a + b)((a + b)² - 1) = (a + b)((a + b) + 1)(a + b - 1) = (a + b)(a + b + 1)(a + b - 1)
- 6x² + xy + 18xz + 3y² = x(6x + y) + 3z(6x + y) = (6x + y)(x + 3z)
- xy - zy + xu - zu - x² + z² = (xy - zy) + (xu - zu) - (x² - z²) = y(x - z) + u(x - z) - z(x - z) = (x - z)(y + u - z)
- x² - y² + xa + ya = (x² - y²) + (xa + ya) = (x + y)(x - y) + a(x + y) = (x + y)((x - y) + a)
- x⁵ + x⁴ + x³ + x² + x + 1 = (x⁵ + x⁴ + x³) + (x² + x + 1) = x³(x² + x + 1) + (x² + x + 1) = (x² + x + 1)(x³ + 1) = (x² + x + 1)(x + 1)(x² - x + 1) = (x + 1)(x² - x + 1)(x² + x + 1)
Exercice 2.8
- L'exercice utilise la formule quadratique pour factoriser des expressions polynomiales de degré deux:
- x² + 5x + 6
- △ = b² - 4ac = 5² - 4 * 1 * 6 = 1
- x_1,2 = (-b ± √△)/2a = (-5 ± √1)/2 = (-5 ±1)/2
- x_1 = (-5 + 1)/2 = -2
- x_2 = (-5 - 1)/2 = -3
- x² + 5x + 6 = (x - (-2))(x - (-3)) = (x + 2)(x + 3)
- x² + 5x + 6
- 2x² - 2x - 24
- △= b² - 4ac = (-2)² - 4 * 2 * (-24) = 196
- x_1,2 = (-b ± √△)/2a = (-(-2) ± √196)/4 = (2 ± 14)/4
- x_1 = (2 + 14)/4 = 4
- x_2 = (2 - 14)/4 = -3
- 2x² - 2x - 24 = 2(x - 4)(x - (-3)) = 2(x - 4)(x + 3)
- 2x² + 7x + 10
- △ = b² - 4ac = 7² - 4 * 2 * 10 = -31 = - 4 * 7.75 < 0
- 2x² + 7x + 10 se factorise pas.
- 2x² + 9x + 7
- △ = b² - 4ac = 9² - 4 * 2 * 7 = 25
- x_1,2 = (-b ± √△)/2a = (-9 ± √25)/4 = (-9 ± 5)/4
- x_1 = (-9 + 5)/4 = -1
- x_2 = (-9 - 5)/4 = - 7/2
- 2x² + 9x + 7 = 2(x - (-1))(x - (-7/2)) = 2(x + 1)(x + 7/2) = (x + 1)(2x + 7)
- 6x² + 15x + 6
- △ = b² - 4ac = 15² - 4 * 6 * 6 = 81
- x_1,2 = (-b ± √△)/2a = (-15 ± √81)/12 = (-15 ± 9)/12
- x_1 = (-15 + 9)/12 = -1/2
- x_2 = (-15 - 9)/12 = -2
- 6x² + 15x + 6 = 6(x - (-1/2))(x - (-2)) = 3(2x + 1)(x + 2)
- x² - 26x + 169
- △= b² - 4ac = (-26)² - 4 * 1 * 169 = 0
- x_1,2 = (-b ± √△)/2a = (-(-26) ± √0)/2 = 26/2 = 13
- x² - 26x + 169 = (x - 13)(x - 13) = (x - 13)²
- 27x² - 75x + 48
- △ = b² - 4ac = (-75)² - 4 * 27 * 48 = 441
- x_1,2 = (-b ± √△)/2a = (-(-75) ± √441)/54 = (75 ± 21)/54
- x_1 = (75 + 21)/54 = 16/9
- x_2 = (75 - 21)/54 = 5/9
- 27x² - 75x + 48 = 27(x - 16/9)(x - 5/9) = 3(9x - 16)(x - 1)
- 4x² + x - 5
- △ = b² - 4ac = 1² - 4 * 4 * (-5) = 81
- x_1,2 = (-b ± √△)/2a = (-1 ± √81)/8 = (-1 ± 9)/8
- x_1 = (-1 + 9)/8 = 1
- x_2 = (-1 - 9)/8 = -5/4
- 4x² + x - 5 = 4(x - 1)(x - (-5/4)) = (x - 1)(4x + 5)
- 11x² + 28x - 15
- △ = b² - 4ac = 28² - 4 * 11 * (-15) = 1444
- x_1,2 = (-b ± √△)/2a = (-28 ± √1444)/22 = (-28 ± 38) / 22
- x_1 = (-28 + 38)/22 = 5/11
- x_2 = (-28 - 38)/22 = -3
- 11x² + 28x - 15 = 11 x(x - (-3)) = (11x - 5)(x + 3)
- 3x² + 26x - 9
- △= b² - 4ac = 26² - 4 * 3 * (-9) = 784
- x_1,2 = (-b ± √△)/2a = (-26 ± √784)/6 = (-26 ± 28)/6
- x_1 = (-26 + 28)/6 = 1/3
- x_2 = (-26 - 28)/6 = -9
- 3x² + 26x - 9 = 3 (x - 1/3)(x - (-9)) = (3x - 1)(x + 9)
- 4x² + 12x + 9
- △ = b² - 4ac = 12² - 4 * 4 * 9 = 0
- x_1,2 = (-b ± √△)/2a = (-12 ± √0)/8 = -12/8 = -3/2
- 4x² + 12x + 9 = 4 (x - (-3/2))(x - (-3/2)) = (2x + 3)(2x + 3) = (2x + 3)²
- 15x² + 225x + 600
- △ = 225² - 4 * 15 * 600 = 5044516
- x_1,2 = (-b ± √△)/2a = (-225 ± √5044516)/30 = (-225 ± 2246)/30
- x_1 = (-225 + 2246)/30 = 677/10
- x_2 = (-225 - 2246)/30 = -823/10
- 15x² + 225x + 600 = 15(x - (-677/10))(x - (-823/10)) = 15(x + 677/10)(x + 823/10)
Exercice 2.9
- L'exercice met en évidence la factorisation d'expressions polynomiales en utilisant différentes techniques, y compris le regroupement et la factorisation par différences de carrés:
- x⁵ + x³ + x² + 1 = (x⁵ + x³) + (x² + 1) = x³(x² + 1) + (x² + 1) = (x² + 1)(x³ + 1) = (x² + 1)(x + 1)(x² - x + 1)
- 16x⁴ - 1 = (4x² - 1)(4x² + 1) = (2x + 1)(2x - 1)(4x² + 1)
- 2x³ + 3x² - 8x - 12 = (2x³ + 3x²) - (8x + 12) = x²(2x + 3) - 4(2x + 3) = (2x + 3)(x² - 4) = (2x + 3)(x + 2)(x - 2)
- a³ - a + 2a² - 2 = (a³ - a) + (2a² - 2) = a(a² - 1) + 2(a² - 1) = (a² - 1)(a + 2) = (a + 1)(a - 1)(a + 2)
- (x² - 1)² - 3(x² - 1) = (x² - 1)((x² - 1) - 3) = (x² - 1)(x² - 4) = (x + 1)(x - 1)(x + 2)(x - 2)
- a²x + b²z - a²z - b²x = (a²x - a²z) + (b²z - b²x) = a²(x - z) + b²(z - x) = a²(x - z) - b²(x - z) = (x - z)(a² - b²) = (x - z)(a + b)(a - b)
- 2x² - 8x - 10 = 2(x² - 4x - 5)
- △ = b² - 4ac = (-4)² - 4 * 1 * (-5) = 36
- x_1,2 = (-b ± √△)/2a = (-(-4) ± √36)/2 = (4 ±6)/2
- x_1 = (4 + 6)/2 = 5
- x_2 = (4 - 6)/2 = -1
- 2(x² - 4x - 5) = 2( x - 5)(x - (-1)) = 2(x - 5)(x + 1)
- 5ab - sa^2 = 5a(b^6 - a^6) = 5a(b^3 + a^3)(b^3 - a^3) = 5a(b + a)(b^2 - ab +a^2)(b - a)(b^2 + ab + a^2) = 5a(b + a)(b - a)(b^2 - ab + a^2)(b^2 + ab + a^2)
- (b - a)x + (a - b)y - 2b + 2a = (b - a)x - (b - a)y -(2b - 2a) = (b - a)x - (b - a)y - 2(b - a) = (b - a)(x - y - 2)
- xy - 2x + 5y - 10 = (xy - 2x) + (5y - 10) = x(y - 2) + 5(y - 2) = (y - 2)(x + 5)
- x² - 8x + 16 - 100y² = (x² - 8x + 16) - 100y² = (x - 4)² - 100y² = (x - 4)² - (10y)² = (x - 4 + 10y)(x - 4 - 10y)
- 27 - 54x + 36x² - 8x³ = (3 - 2x)³
- x⁵ - 5x³ + x² - 1 = (x⁵ - x^3) + (x² - 1) = x^3(x^2 - 1) + (x^2 - 1) = (x^2 - 1)(x³ + 1) = (x + 1) (x - 1)(x + 1)(x^2 - x + 1) = (x - 1)(x + 1)² (x^2 - x + 1)
- 36x² - 84x + 49 = (6x - 7)²
- (2x - 5)(4x - 7) - 3(5 - 2x) = (2x - 5)(4x - 7) + 3(2x - 5) = (2x - 5)((4x - 7) + 3) = (2x - 5)(4x - 4) = 4(x - 1)(2x - 5)
- 4 + (xy)/x + x/4 = 4 + y + x/4
- 2x³ - 3x² + x = x(2x² - 3x + 1)
- △ = b² - 4ac = (-3)² - 4 * 2 * 1 = 1
- x_1,2 = (-b ± √△)/2a = (-(-3) ± √1)/4 = (3 ± 1)/4
- x_1 = (3 + 1)/4 = 1
- x_2 = (3 - 1)/4 = 1/2
- 2x² - 3x + 1 = 2(x - 1)(x - 1/2) = (x - 1)(2x - 1)
- 2x³ - 3x² + x = x(x - 1)(2x - 1)
- x⁴ - 4 = (x² + 2)(x² - 2) = (x² + 2)(x + 2)(x - 2)
- 8 x² y - 4xy - 12y = 4y(2x² - x - 3)
- △ = b² - 4ac = (-1)² - 4 * 2 * (-3) = 25
- x_1,2 = (-b ± √△)/2a = (-(-1) ± √25)/4 = (1 ± 5)/4
- x_1 = (1 + 5)/4 = 3/2
- x_2 = (1 - 5)/4 = -1
- 2x² - x - 3 = 2(x - 3/2)(x - (-1)) = (2x - 3)(x + 1)
- 8x² y - 4xy - 12 y = 4y(2x - 3)(x + 1)
- (x + 1)(x² + 16) - 8x² - 8x = (x + 1)(x² + 16) -(8x² + 8x) = (x + 1)(x² + 16) - 8x(x + 1) = (x + 1)((x² + 16) - 8x) = (x + 1)(x² - 8x + 16) = (x + 1)(x - 4)²
- 4x² (x - 7) - (4x + 1)(7 - x) = 4x²(x - 7) + (4x+ 1)(x- 7) = (x - 7)(4x^2 + 4x + 1) = (x - 7)(2x + 1)²
- 30x³ + 55x² - 10x = 5x(6x² + 11x - 2)
- △= b² - 4ac = 11² - 4 * 6 * (-2) = 169
- x_1,2 = (-b ± √△)/2a = (-11 ± √169)/12 = (-11 ± 13)/12
- x_1 = (-11 + 13)/12 = 1/6
- x_2 = (-11 - 13)/12 = -2
- 6x² + 11x - 2 = 6(x - 1/6)(x - (-2)) = (6x - 1)(x + 2)
- 30x³ + 55x² - 10x = 5x(6x - 1)(x + 2)
- 4x⁴ - 36x³ + 108x² - 108x = 4x(x³ - 9x² + 27x - 27) = 4x(x - 3)^3
- 16(x + 3) - x^5 - 3x^4 = 16(x + 3) - (x^5 + 3x^4) = 16(x + 3) - x^4(x + 3) = (x + 3)(16 - x^4) = (x + 3)(4^2 - (x^2)^2) = (x + 3)(4 + x^2)(4 - x^2) = (x + 3)(4 + x^2)(2 +x)(2 - x)
- 4(x - 1)^3 - (2x + 2)(x - 1)^2 = (x - 1)^2(4(x - 1) - (2x + 2)) = (x - 1)^2(4x - 4 - 2x - 2) = (x - 1)^2 (2x - 6) = 2(x - 3)(x - 1)^2
- 12 + 4x - 3x^2 - x^3 = (12 + 4x) -(3x^2 + x^3) = 4(3 + x) - x^2(3 + x) = (3 + x)(4 - x^2) = (3 + x)(2 + x)(2 - x)
- (x - 3)(26 - x²) - x + 3 = (x - 3)(26 - x²) - (x - 3) = (x - 3)(26 - x² - 1) = (x - 3)(25 - x^2) = (x - 3)(5 + x)(5 - x)
Exercice 2.10
- L'exercice utilise les règles des exposants pour simplifier des expressions algébriques, par exemple:
- x⁴/x³ = x^(4 - 3) = x
- (-x)^-6 / (-x)^3 = (-x)^(-6 - 3)= (-x)^-9
- (x²)^-2 = x^(-2 * 2) = x^-4
- (x^1/2)^4 = x^(1/2 * 4) = x^2
- √x ^3 = x^(3/2)
- √x^5 / √x^3 = x^(5 / 2) / x^(3 / 2) = x^((5/2) - (3/2)) = x
- √x^6 / √x^4 = x^(6 / 2) / x^(4 / 2) = x^(3 - 2) = x
- √x^(9 / 2) / √x^(11 / 2) = x^(9 / 4) / x^(11 / 4) = x^((9 / 4) - (11 / 4)) = x^(-1 / 2) = 1/√x
- 22^2 a^2 b^6 c^3 / 77^7 a^5 b^3 c^3 = (2^2 / 7^7)(a^2 / a^5)(b^6 / b^3) = 4/823543 a^(-3)b^3 = 4b^3 / 823543 a^3
- 64x^3 y^3 z^2 / 88x^4 y^7 z^9 = (64 / 88)(x^3 / x^4)(y^3 / y^7)(z^2 / z^9) = 8/11 x^(-1) y^(-4) z^(-7) = 8 / 11xy^4 z^7
- 54a^2 xy / 54a^2 xy = 1
- 18a^2b^2 * x^-4 * y^-3 / 128a^4 * b^-5 * u^-7 = (18 / 128) (a^2 / a^4)(b^2 / b^-5)(x^-4)(y^-3)(u^-7) = 9/64 a^-2 b^7 x^-4 y^-3 u^-7
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
Testez vos compétences en algèbre avec ce quiz qui couvre diverses manipulations d'équations. À travers plusieurs questions, vous apprendrez à développer, factoriser et simplifier des expressions algébriques. Ce quiz est idéal pour les élèves de 10e classe qui souhaitent renforcer leur compréhension de l'algèbre.