Algebra Chapter 2
10 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the result of dividing a negative integer by a positive integer?

  • The result is zero.
  • The result is negative. (correct)
  • The result is positive.
  • The result is undefined.
  • What is the quotient of (–100) ÷ 5?

  • –15
  • –20 (correct)
  • 20
  • 15
  • Which of the following represents the property of division for negative integers correctly?

  • Dividing a positive by a positive results in a negative.
  • Dividing a negative by a negative results in a negative.
  • Dividing a negative by a positive results in a positive.
  • Dividing a negative by a negative results in a positive. (correct)
  • If (–8) × (–9) equals 72, what is the corresponding division statement?

    <p>72 ÷ (–9) = –8</p> Signup and view all the answers

    How do you represent (–45) ÷ 5?

    <p>It can be simplified to 9 with a minus sign.</p> Signup and view all the answers

    What is the result of dividing a negative integer by 1?

    <p>The result remains the same negative integer.</p> Signup and view all the answers

    How is division not commutative for integers demonstrated?

    <p>(–30) ÷ (–6) does not equal (–6) ÷ (–30).</p> Signup and view all the answers

    What happens when you divide any integer by (–1)?

    <p>The result is the opposite sign of the integer.</p> Signup and view all the answers

    Which statement about dividing by zero is true?

    <p>Dividing any integer by zero is not defined.</p> Signup and view all the answers

    What can you conclude from the example (–8) ÷ (–4) = 2?

    <p>Dividing two negative integers always results in a positive integer.</p> Signup and view all the answers

    Study Notes

    Division of Integers

    • Division is not commutative for integers, meaning ( a ÷ b \neq b ÷ a ).
    • Example: ( (–8) ÷ (–4) = 2 ) while ( (–4) ÷ (–8) \neq 2 ).
    • Division of integers can yield different types of results:
      • ( a ÷ 0 ) is undefined; ( 0 ÷ b = 0 ) for any ( b \neq 0 ).

    Division by One

    • Dividing any integer by ( 1 ) results in the same integer.
      • Example: ( (–8) ÷ 1 = (–8) ).
    • This rule holds true for negative integers as well.

    Division by Negative One

    • Dividing an integer by ( –1 ) changes the sign of the integer.
      • Example: ( (–1) × 5 = –5 ) implies ( 5 ÷ (–1) = (–5) ).

    Inverse Relationship with Multiplication

    • Division is the inverse operation of multiplication.
      • Example: For ( 3 × 5 = 15 ), it follows that ( 15 ÷ 5 = 3 ) and ( 15 ÷ 3 = 5 ).
    • Each multiplication statement corresponds to two division statements.

    Observations on Division Results

    • When dividing a negative integer by a positive integer, the quotient is negative.
      • Example: ( (–32) ÷ 4 = (–8) ).
    • Conversely, dividing a positive integer by a negative integer also results in a negative quotient.

    Negative Divisions

    • Dividing two negative integers results in a positive quotient.
      • Example: ( (–12) ÷ (–6) = 2 ).

    General Division Rules

    • For two positive integers ( a ) and ( b ):
      • ( a ÷ (–b) = (–a) ÷ b ) for ( b \neq 0 ).
      • ( (–a) ÷ (–b) = a ÷ b ) for ( b \neq 0 ).

    Non-closure Property

    • Integers are not closed under division, as not every division operation yields another integer.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    Integers Chapter 1 PDF

    Description

    Test your knowledge of division with negative numbers in this algebra quiz. Analyze statements and inferences to determine the outcomes of various division operations. Perfect for students looking to reinforce their understanding of integer results.

    More Like This

    Use Quizgecko on...
    Browser
    Browser