Podcast
Questions and Answers
What is the result of adding 1/4 and 2/4?
What is the result of adding 1/4 and 2/4?
What is the least common multiple (LCM) of 4 and 6?
What is the least common multiple (LCM) of 4 and 6?
How can we visually represent the sum of fractions?
How can we visually represent the sum of fractions?
What is the result of subtracting 2/4 from 3/4?
What is the result of subtracting 2/4 from 3/4?
Signup and view all the answers
What is the result of adding 1/6 and 2/8?
What is the result of adding 1/6 and 2/8?
Signup and view all the answers
What is the result of subtracting 2/6 from 3/4?
What is the result of subtracting 2/6 from 3/4?
Signup and view all the answers
What is the result of adding 1/8 and 2/8?
What is the result of adding 1/8 and 2/8?
Signup and view all the answers
What is the result of subtracting 1/8 from 3/8?
What is the result of subtracting 1/8 from 3/8?
Signup and view all the answers
Study Notes
Adición De Fracciones Con Igual Denominador
- Para sumar fracciones con igual denominador, se suman los numeradores y se mantiene el mismo denominador.
- Ejemplo: 1/4 + 2/4 = 3/4
- Se pueden sumar varias fracciones con igual denominador, sumando los numeradores y manteniendo el denominador.
Adición De Fracciones Con Distinto Denominador
- Para sumar fracciones con distinto denominador, se necesitan encontrar el mínimo común múltiplo (mcm) de los denominadores.
- Se convierten las fracciones al mismo denominador (mcm) y se suman los numeradores.
- Ejemplo: 1/4 + 1/6 = ?
- mcm de 4 y 6 es 12
- Convertimos las fracciones: 3/12 + 2/12 = 5/12
- Se pueden sumar varias fracciones con distinto denominador, encontrando el mcm y sumando los numeradores.
Representación Gráfica De Sumas De Fracciones
- Se puede representar gráficamente la suma de fracciones mediante rectángulos o áreas divididas.
- Cada fracción se representa como una parte de un todo, y la suma se representa como la unión de las partes.
- La representación gráfica ayuda a visualizar la suma y a comprender mejor el concepto.
Resta De Fracciones Con Igual Denominador
- Para restar fracciones con igual denominador, se restan los numeradores y se mantiene el mismo denominador.
- Ejemplo: 3/4 - 2/4 = 1/4
- Se pueden restar varias fracciones con igual denominador, restando los numeradores y manteniendo el denominador.
Resta De Fracciones Con Distinto Denominador
- Para restar fracciones con distinto denominador, se necesitan encontrar el mínimo común múltiplo (mcm) de los denominadores.
- Se convierten las fracciones al mismo denominador (mcm) y se restan los numeradores.
- Ejemplo: 3/4 - 2/6 = ?
- mcm de 4 y 6 es 12
- Convertimos las fracciones: 9/12 - 4/12 = 5/12
- Se pueden restar varias fracciones con distinto denominador, encontrando el mcm y restando los numeradores.
Adding Fractions with the Same Denominator
- To add fractions with the same denominator, add the numerators and keep the same denominator.
- Example: 1/4 + 2/4 = 3/4
- Multiple fractions with the same denominator can be added by adding the numerators and keeping the denominator.
Adding Fractions with Different Denominators
- To add fractions with different denominators, find the least common multiple (LCM) of the denominators.
- Convert the fractions to the same denominator (LCM) and add the numerators.
- Example: 1/4 + 1/6 = ?; LCM of 4 and 6 is 12
- Convert the fractions: 3/12 + 2/12 = 5/12
- Multiple fractions with different denominators can be added by finding the LCM and adding the numerators.
Graphical Representation of the Sum of Fractions
- The sum of fractions can be graphically represented using rectangles or divided areas.
- Each fraction is represented as a part of a whole, and the sum is represented as the union of the parts.
- The graphical representation helps visualize the sum and better understand the concept.
Subtracting Fractions with the Same Denominator
- To subtract fractions with the same denominator, subtract the numerators and keep the same denominator.
- Example: 3/4 - 2/4 = 1/4
- Multiple fractions with the same denominator can be subtracted by subtracting the numerators and keeping the denominator.
Subtracting Fractions with Different Denominators
- To subtract fractions with different denominators, find the least common multiple (LCM) of the denominators.
- Convert the fractions to the same denominator (LCM) and subtract the numerators.
- Example: 3/4 - 2/6 = ?; LCM of 4 and 6 is 12
- Convert the fractions: 9/12 - 4/12 = 5/12
- Multiple fractions with different denominators can be subtracted by finding the LCM and subtracting the numerators.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Learn how to add fractions with same and different denominators, including finding the least common multiple (LCM) of denominators.