8 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the goal of unsupervised machine learning?

  • 기계가시각데이터를해석하는것
  • 기계가setLabel을setLabel하여학습하는것
  • 기계가인류의언어를이해하는것
  • 기계가데이터에서패턴을찾는것 (correct)
  • Which NLP technique is used to identify the grammatical category of each word?

  • Part-of-speech tagging (correct)
  • Named entity recognition
  • Sentiment analysis
  • Tokenization
  • What is the application of computer vision?

  • language understanding
  • machine learning
  • image recognition (correct)
  • neural networks
  • What is a type of deep learning?

    <p>Recurrent neural networks (RNNs)</p> Signup and view all the answers

    What is a component of a neural network?

    <p>Weights and biases</p> Signup and view all the answers

    Which machine learning algorithm is used for regression?

    <p>Linear regression</p> Signup and view all the answers

    What is the goal of supervised machine learning?

    <p>기계가라벨이붙어있는데이터를학습하는것</p> Signup and view all the answers

    What is a type of neural network?

    <p>Feedforward neural networks</p> Signup and view all the answers

    Study Notes

    Artificial Intelligence

    Machine Learning

    • A subset of AI that involves training machines to learn from data and make predictions or decisions based on that data
    • Types of machine learning:
      • Supervised learning: labeled data is used to train the machine
      • Unsupervised learning: unlabeled data is used to identify patterns
      • Reinforcement learning: machine learns through trial and error
    • Machine learning algorithms:
      • Linear regression
      • Decision trees
      • Random forests
      • Support vector machines (SVMs)

    Natural Language Processing (NLP)

    • A subset of AI that deals with the interaction between computers and human language
    • Goals of NLP:
      • Language understanding
      • Language generation
      • Language translation
    • NLP techniques:
      • Tokenization: breaking down text into individual words or tokens
      • Part-of-speech tagging: identifying the grammatical category of each word
      • Named entity recognition: identifying named entities such as people, places, and organizations
      • Sentiment analysis: determining the emotional tone of text

    Computer Vision

    • A subset of AI that deals with enabling computers to interpret and understand visual data from the world
    • Applications of computer vision:
      • Image recognition
      • Object detection
      • Image segmentation
      • Facial recognition
    • Computer vision techniques:
      • Convolutional neural networks (CNNs)
      • Edge detection
      • Feature extraction
      • Object recognition

    Deep Learning

    • A subset of machine learning that involves the use of neural networks with multiple layers
    • Types of deep learning:
      • Feedforward neural networks
      • Recurrent neural networks (RNNs)
      • Convolutional neural networks (CNNs)
    • Deep learning applications:
      • Image recognition
      • Speech recognition
      • Natural language processing
      • Game playing

    Neural Networks

    • A type of machine learning model inspired by the structure and function of the human brain
    • Components of a neural network:
      • Input layer
      • Hidden layers
      • Output layer
      • Weights and biases
    • Types of neural networks:
      • Feedforward neural networks
      • Recurrent neural networks (RNNs)
      • Convolutional neural networks (CNNs)
    • Neural network training:
      • Backpropagation
      • Gradient descent
      • Activation functions

    인공 지능

    머신 러닝

    • 데이터를 통해 기계가 학습하고 예측 또는 의사 결정을 내리는 AI의 하위 집합
    • 머신 러닝의 유형:
      • 지도 학습: 레이블이 붙은 데이터를 사용하여 기계를 훈련
      • 비지도 학습: 레이블이 없는 데이터를 사용하여 패턴을 확인
      • 강화 학습: 기계가 실수를 통해 학습
    • 머신 러닝 알고리즘:
      • 선형 회귀
      • 의사 결정 트리
      • 랜덤 포레스트
      • 서포트 벡터 머신(SVM)

    자연어 처리(NLP)

    • 컴퓨터와 인간 언어 간의 상호작용을 다루는 AI의 하위 집합
    • NLP의 목표:
      • 언어 이해
      • 언어 생성
      • 언어 번역
    • NLP 기술:
      • 토큰화: 텍스트를 개별 단어 또는 토큰으로 나누는 것
      • 품사 태깅: 각 단 слова의 문법 카테고리를 확인
      • Named Entity Recognition(NER): 사람, 장소, 조직 등의 개체를 확인
      • 감정 분석: 텍스트의 감정 톤을 확인

    컴퓨터 비전

    • 세계의 시각 데이터를 해석하고 이해하는 AI의 하위 집합
    • 컴퓨터 비전의 응용:
      • 이미지 인식
      • 물체檢출
      • 이미지 분할
      • 얼굴 인식
    • 컴퓨터 비전 기술:
      • 컨볼루션 신경망(CNN)
      • 에지 검출
      • 피처 추출
      • 물체 인식

    딥 러닝

    • 다층 신경망을 사용하는 머신 러닝의 하위 집합
    • 딥 러닝의 유형:
      • 피드포워드 신경망
      • 순환 신경망(RNN)
      • 컨볼루션 신경망(CNN)
    • 딥 러닝의 응용:
      • 이미지 인식
      • 스피치 인식
      • 자연어 처리
      • 게임 플레이

    신경망

    • 인간의 뇌 구조와 기능을 모방한 머신 러닝 모델
    • 신경망의 구성 요소:
      • 입력 레이어
      • 은닉 레이어
      • 출력 레이어
      • 가중치와 bais
    • 신경망의 유형:
      • 피드포워드 신경망
      • 순환 신경망(RNN)
      • 컨볼루션 신경망(CNN)
    • 신경망 훈련:
      • 역전파
      • 그래디언트 하강
      • 활성화 함수

    Please let me know if this meets your requirements!

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team
    Use Quizgecko on...
    Browser
    Browser