10-sinf Matematikasi
10 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Ushbu tenglamaning ildizlarini toping: 2x^2 - 3x - 5 = 0.

  • x_1 = -2, x_2 = 3
  • x_1 = -1, x_2 = 2.5 (correct)
  • x_1 = 1, x_2 = -1
  • x_1 = 5, x_2 = -2

Quyidagi trigonometrik tenglamaning umumiy yechimini toping: sin(2x) = 0.5.

  • x = π/12 + nπ
  • x = π/4 + nπ
  • x = π/3 + nπ
  • x = π/6 + nπ (correct)

To'g'ri burchakli uchburchakda katetlar a = 6 va b = 8. Gipotenuza c ni hisoblang.

  • 15
  • 12
  • 10 (correct)
  • 14

Quyidagi funksiya hosilasini hisoblang: f(x) = 3x^3 - 5x^2 + 4x - 7.

<p>f'(x) = 9x^2 - 10x + 4 (A)</p> Signup and view all the answers

Quyidagi aniq integraldan natijani toping: ∫_0^2 (3x^2 - 4x + 1) dx.

<p>6 (D)</p> Signup and view all the answers

Kvadrat tenglamaning yechimini aniqlashda qanday formula qo'llaniladi?

<p>x = (-b ± √(b² - 4ac)) / 2a (D)</p> Signup and view all the answers

Quyidagi trigonometrik tenglama yechimi sin(2x) = 0.5 bo'lsa, x ning qiymati qanday aniqlanadi?

<p>x = π/6 + nπ (A)</p> Signup and view all the answers

Pifagor teoremasiga ko'ra, katetlar a = 6 va b = 8 bo'lsa, gipotenuzaning uzunligi qanday topiladi?

<p>c = 10 (D)</p> Signup and view all the answers

Berilgan funksiya f(x) = 3x^3 - 5x^2 + 4x - 7 ning hosilasini qanday topasiz?

<p>f'(x) = 9x^2 - 10x + 4 (D)</p> Signup and view all the answers

Aniq integral ∫_0^2 (3x^2 - 4x + 1) dx ga teng bo'lgan natija qanday hisoblanadi?

<p>6 (C)</p> Signup and view all the answers

Study Notes

Kvadrat tenglama yechimi

  • Kvadrat tenglama quyidagi ko'rinishda yoziladi: ax² + bx + c = 0
  • Berilgan tenglama 2x² - 3x - 5 = 0 bo'lib, uning ildizlari x₁ = -1 va x₂ = 2.5 ga teng.

Trigonometrik tenglama yechimi

  • sin(2x) = 0.5 tenglamasining umumiy yechimi x = π/6 + nπ hisoblanadi.
  • n - ixtiyoriy butun sonni bildiradi.

To'g'ri burchakli uchburchakda Pifagor teoremasi

  • To'g'ri burchakli uchburchakda, katetlar a = 6 va b = 8 ga teng bo'lsa, gipotenuza c = 10 ga teng.
  • Bu Pifagor teoremasi c² = a² + b² ga asoslangan.

Hosila hisoblash

  • Berilgan f(x) = 3x³ - 5x² + 4x - 7 funksiyasining hosilasini hisoblash mumkin.
  • f'(x) = 9x² - 10x + 4 bo'lib, bu hosila f(x) ning har bir nuqtada kesishgan to'g'ri chiziqning qiyalik koeffitsientiga teng.

Integral hisoblash

  • ∫₀² (3x² - 4x + 1) dx integralining natijasi 6 ga teng.
  • Bu integralni hisoblashda, biz 3x² - 4x + 1 funksiyasini 0 dan 2 gacha bo'lgan oraliqda integralladik.

Kvadrat tenglama

  • Kvadrat tenglama ko'rinishi: ax^2 + bx + c = 0
  • Ushbu tenglamaning ildizlari quyidagi formula orqali topiladi: x = (-b ± √(b^2 - 4ac)) / 2a
  • Masalan, 2x^2 - 3x - 5 = 0 tenglamasida a = 2, b = -3, c = -5.
  • Tenglamaning ildizlari x1 = -1 va x2 = 2.5 ga teng.

Trigonometrik tenglama

  • sin(2x) = 0.5 tenglamaning umumiy yechimi: x = π/6 + nπ
  • n butun son bo'lib, u har qanday qiymatni olishi mumkin.

Pifagor teoremasi

  • To'g'ri burchakli uchburchakda, gipotenuzaning kvadrati ikkala katetning kvadratlari yig'indisiga teng: c^2= a^2+b^2
  • Agar a = 6 va b = 8 bo'lsa, gipotenuza c = √(6^2 + 8^2) = √(36+64) = √100 = 10 ga teng.

Hosila hisoblash

  • f(x) = 3x^3 - 5x^2 + 4x - 7 funksiyasining hosilasi f'(x) = 9x^2 - 10x + 4 ga teng.
  • Hosilaning hisoblanishi x^n funksiyasining hosilasi n*x^(n-1) ga teng ekanligi qoidasi bo'yicha amalga oshiriladi.

Integral hisoblash

  • ∫_0^2 (3x^2 - 4x + 1) dx aniq integralining qiymati 6 ga teng.
  • Aniq integralning hisoblanishi quyidagi qoidalar bo'yicha amalga oshiriladi:
    • ∫x^n dx = x^(n+1)/(n+1) + C
    • ∫(ax + bx + c) dx = (a/2)x^2 + (b/2)x^2 + cx + C
  • C - integral doimiysi.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

Mathematics Test PDF

Description

Ushbu viktorina 10-sinf matematikasi bo'yicha turli masalalarni o'z ichiga oladi. Unda kvadrat tenglamalar, trigonometriya, Pifagor teoremasi, hosila va integral hisoblash masalalari mavjud. Har bir bo'lim alohida misollar bilan taqdim etilgan.

More Like This

Use Quizgecko on...
Browser
Browser